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Swarm intelligence (SI) based algorithms are performing very well in the field of optimization
over the past few decades. A lot of new SI based algorithms are being developed. The existing
algorithms are also modified, mostly, either by hybridizing them with some other algorithms
or by incorporating local search techniques. This research presents a new local search strat-
egy based on grasshopper jumping mechanism. The proposed local search strategy is termed
as grasshopper local search strategy (GHLS). Further, the proposed strategy is incorporated
into an efficient SI based algorithm, artificial bee colony (ABC) algorithm. The proposed
hybridized algorithm is termed as grasshopper inspired artificial bee colony (GHABC) algo-
rithm. The proposed GHABC is tested on 37 numerical benchmark optimization functions.
The results indicate that the proposed GHABC algorithm is a competent approach for solving
numerical optimization problems.
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1. Introduction

In the field of optimization a lot of conventional and non-conventional algorithms have
been applied in years. The conventional algorithms are sometimes time consuming and
non-robust (Yang, 2014). A class of non-conventional techniques namely, swarm intel-
ligence (SI) based techniques emerged due to wide availability of high computational
efficiency. SI based algorithms are artificial intelligent techniques that are based on the
social grouping behaviour of animals, insects, and birds etc., found in nature. Artifi-
cial bee colony (ABC) algorithm is among the most popular SI based algorithms. The
ABC algorithm was introduced in 2005 by D. Karaboga (Karaboga, 2005). It is an effi-
cient technique based on the nourishment scavenging behavior of honey bees. The ABC
consists of a population of potential solutions as other population based optimization
algorithms. The potential solutions are food sources of honey bees. The fitness is deter-
mined in terms of the quality (nectar amount) of the food source (Karaboga, Gorkemli,
Ozturk, & Karaboga, 2014; Bansal, Sharma, & Jadon, 2013).

There are two fundamental processes which drive the swarm to update the position in
the search space in ABC: the variation process, which explores the different areas of the
search space, and the selection process, which ensures the exploitation of the previously
explored areas based upon the previous experience and knowledge. However, it has been
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proven that the ABC may sometimes stop proceeding towards the global optimum even
though the population has not converged to a local optimum (Karaboga & Akay, 2009). It
can be seen that the solution search process of ABC algorithm is good at exploration but
poor at exploitation (Zhu & Kwong, 2010). Therefore, to maintain the proper harmony
between exploration and exploitation behavior of ABC, it is highly required to develop
a local search approach in the basic ABC to exploit the search region.

In this article, a local search strategy inspired from grasshopper jumping phenomenon is
developed. Here the position update strategy (modified position of solutions) is derived
from the jumping distance of the grasshopper. The proposed local search strategy is
termed as grasshopper local search strategy (GHLS). Further, the proposed local search
is implemented into ABC process in expectation of improving exploitation ability of
the algorithm. The proposed hybridized algorithm is named as grasshopper inspired
ABC (GHABC). The performance of GHABC is analyzed through various numerical
experiments with respect to accuracy, reliability, and consistency. The obtained numerical
results prove the validity of the proposed approach.

The rest of the paper is structured as follows: Section 2, covers the overview of ABC
algorithm. The proposed GHLS strategy is explained in Section. 3. Section 4 describes the
proposed GHABC algorithm. An extensive analysis of the proposed GHABC algorithm
is performed with standard benchmark optimization in Section. 5. Finally the Section. 6
summarizes the proposed work.

2. Overview of ABC Algorithm

The cooperative intelligent behavior of social insects, birds and other social animal have
always been an inspiration and interesting field for the researchers of various fields. The
grouping behavior of insects and animals is known as the swarm behavior. Swarm intel-
ligence (ST) based techniques are emerging techniques with the advent of computational
intelligence. Self organization and division of labor are two key components of SI. ABC
algorithm is an ST based optimization algorithm. ABC is inspired from the aggregate
intelligent searching exercises of the natural honey bees (Karaboga & Basturk, 2007).

In ABC algorithm, nutriment source location indicates a feasible solution for the op-
timization problem and the nectar value of a nutriment source resembles to the fitness
of the solution (Karaboga & Akay, 2009). The set of the artificial bees is subdivided
into three groups, namely employed bees, onlooker bees, and scout bees. The number of
employed bees and onlooker bees are equal to the number of nutriment sources. A bee
by standing for employed bees for taking a verdict about how to pick the food source is
titled as onlooker bee. The employed bees arbitrarily search for the locations of the food
source and share its knowledge with the onlooker bees, which halts at the hive. Scout
bees search the new food sources arbitrarily depending upon the internal motivation
(Karaboga & Akay, 2009).

ABC is an iterative algorithm similar to other state-of-art population-based meta-
heuristic algorithms. It involves sequence of the four phases namely, initialization of the
swarm phase, employed bee phase, onlooker bee phase, and scout bee phase (Akay &
Karaboga, 2012). The description of these phases is given below:-

2.1. Inatialization of the swarm phase:

Firstly, ABC produces a uniformly distributed initial population of SN solutions, where
every single solution (food source) z; (i=1, 2, . . . ; SN) is a D-dimensional vector. Here,



D is the number of decision variables in the optimization problem and z; is the " food
source in the population. Food sources are produced as per the following Eq. 1:

Tij = Tming + rand[O, 1](33maz] - xmzn]) (1)

Where, Zpinj and 24,5 are bounds of x; in 4t direction and rand [0, 1] is a uniformly
distributed random number in [0, 1].

2.2. FEmployed bee phase:

In the course of this phase, each existing solution is modified based on the information
provided by the knowledge of the individual and the fitness value of the recently produced
solution, i.e. nectar quantity. If the fitness value of the recently produced solution is better
than the earlier solution, the bee apprises its position with the recent one and rejects the
previous one (Akay & Karaboga, 2012). The position update equation for ith candidate
solution is as follows:

vij = T3 + ¢ij(wij — Tryj) (2)

Where, k£ € {1,2,..., SN} and j € {1,2,..., D} are arbitrarily chosen indices, k¥ must
be non-identical to ¢, and ¢;; is an arbitrary number in the range [-1, 1].

2.3. Onlooker bee phase:

The congregated knowledge is communicated by all the employed bees about the new
fitness, i.e. nectar of the recently produced solutions (food sources) and their locus in-
formation with the onlooker bees in the hive. The available information is examined by
the onlooker bees and they pick a solution with a probability p;, associated to its fitness.
The probability p; is calculated as below:

i
pi = SN o (3)

There may be other choices of calculating p;, but it must be the function of fitness.
The fitness value of the i*" solution is fit;. Alike the employed bee phase, it modifies the
reformation in the position in its memory and computes for the fitness of the candidate
source. In case, the recent fitness is higher than that of the earlier one, the bee memorizes
the recently generated position and abandons the earlier one.

2.4. Scout bee phase:

The food source is considered to be deserted if the position of a food source is not
updated up to a predefined threshold value, i.e number of cycles and then scout bee
phase commences. In this phase, the food source is exchanged by a randomly picked
food source within the specified area. Assume that the deserted food source is x; and



j € {1,2,...,D} then the scout bee replaces this food source with z;. This process can
be described as follows:

Tij = Tming + rand[O, 1](33mam] - xmzn]) (4)

Where, Zin; and 4. are bounds of z; in jth direction.
The pseudo-code of the ABC algorithm is presented by Algorithm 1:

Algorithm 1 Artificial Bee Colony Algorithm:

Initialize the parameters
while Termination criteria is not satisfying do

Employed bee phase

Onlooker bee phase

Scout Bee Phase

Memorize the best solution found so far

end while
Output the best solution found so far

3. Grasshopper inspired local search strategy

Grasshopper (GH) is an insect. The GHs or locusts have an extraordinary capacity of
jumping, which separates them from other insects. Its name is a combination of two words
grass and hopper, which implies that it can hop or jump on grass or any other base. GHs
are commonly ground-habitat creepy crawlies with capable hind legs which empower
them to escape from dangers by jumping, vivaciously. They ensure their security from
enemies by camouflage when exposed, many species try to frighten the enemies with a
very bright colored wing-flash during jumping and (if adult) launching them into the air,
generally flying for just a short distance.

A large GH, for example, a locust jumps around a meter (One meter is equal to twenty
body lengths of GH) without utilizing its pinions; the acceleration reaches the highest
point at about 20 g (g is gravitational constant). GHs jump by enlarging their hefty
posterior legs and propelling opposing the substratum (the base, a stick, an edge of lawn
or whatsoever base GH are sitting on); the counteraction dynamism impels them in the
midair. They bounce for various motives; to get away from an enemy, to attain trajectory
path, or normally to proceed from one position to another position. To get the breakout
jump, especially, there is robust finical pressure to exaggerate lift-off pace, since this
depicts the span. This entails that the legs utterly propel opposite the base with both
great force and a great pace of motion. In any case, an elementary feature of muscle is
that it can’t shrink with both great force and great pace, which appears as a trouble. The
GHs defeat this evident counterstatement by utilizing a catapult operation to exaggerate
the mechanical energy generated by their muscles (Offenbacher, 1970). The organism of
GH is shown in Fig. 1.

The jump of GH takes place in three steps. To start with, the GH thoroughly expands
the lower some portion of the leg (tibia) opposing the upper part (femur) by mobilizing
the flexor tibiae muscle (the posterior legs of the young GH as shown in Fig. 1 in this
elementary location). Further, there is a time of co-shrinking in which force raised up



in the large, pennate extensor tibiae muscle, however, the tibia remains expanded via
parallel shrinking of the flexor tibiae muscle. The extensor muscle is substantially athletic
in comparison to the flexor muscle, however, the second one is facilitated by expertness in
the joint that provide it a substantial operative mechanical power merit over the previous
when the tibia is completely flexed. Co-shrinking can persist for as long as half a second,
and amid this time the extensor muscle curtails and accumulates elastic strain energy by
disfiguring stiff cuticular architecture in the leg. The extensor muscle shrinking is gradual
(practically isometric), which permits it to establish great force (up to 14 Newton in the
desert locust), but since it is gradual quite small power is required. The last step of
the jump is the prompt loosening of the flexor muscle, which discharges the tibia from
the flexed state. The resulting fast tibial extension is driven for the most part by the
relaxation of the elastic architectures, rather than by further curtailing of the extensor
muscle (Heitler, 1974). Hence, the stiff cuticle behaves similar to the elastic of a catapult
or the bow of a bow-and-arrow. Energy is stored at small power by gradual but athletic
muscle shrinking and recovered from the store at high power by fast relaxation of the
mechanical elastic architectures (Bennet-Clark, 1975). If the effects of air resistance are
overlooked, the motion of a hopping creature after it lifts-off the base is like the motion
of a ball when it’s thrown or a bullet after it’s shot from a gun. This is called a ballistic
movement, and the equations depicting the kinetics of such movements are well known,
they were first derived by Isaac Newton in the seventeenth century (Hall, 1996).

Antenna

1

Figure 1: Grasshopper line curve
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The horizontal distance R that a ballistic projectile travels is related to the take-off angle
6 and the velocity V at take-off: Where, g is the acceleration due to gravity (9.81m/s?).
To maximize range, therefore, an animal should take off at 45° to the horizontal (sin26 =
sin90 = 1). The key point is that if an animal takes off (or a bullet is fired) at this optimal
angle of 45°, then its range is entirely dependent on its take-off velocity, whatever the
size or weight of the animal.

As highly effective biological mechanisms are very common in nature, this article pro-
poses a new local search strategy based upon the above GH jumping phenomenon and
hybridized with ABC. The position update strategy is derived from the GH jumping
distance. The distance R as mentioned in Eq. 5 is used as a new position of the best

1This figure is accessed on January 2018 from http://idtools.org/id/grasshoppers/glossary.php



solution which is going to update its position during the search process. The proposed
local search strategy is named as grasshopper local search strategy (GHLS). The detailed
description of GHLS strategy is as follows:-

In the proposed GHLS, Eq. 5 is adapted with some modifications as shown in Eq. 6. It
is clear from this equation that the nearby search area of the best solution is exploited
during the local search process.

Thestj = \/ (best)? + (Thestj — wij)* X sin(20); (6)

Where, i is a randomly selected solution from the population, zj_, y is the updated po-

sition of the best solution of the swarm in j** direction, and @ represents the angle of
rotation. Here, V? = \/(azbestj)Q + (Tpestj — mij)2, which is derived from the self persis-
tence and by inculcating the information from any randomly selected solution of the
search space. The value of 8 varies from 0° to 360°. The value of 6 is calculated as per
the Eq. 7.

0=10xt (7)

Here, t represents the current iteration of the local search. The total number of local
search iteration 7" is decided based upon an extensive analysis which is mentioned in the
experimental setting. The pseudo-code of the proposed local search strategy GHLS is
shown in Algorithm 2.

Algorithm 2 Grasshopper Local Search Strategy (GHLS):

Input optimization function Minf(x);
Select the best solution xpes in the swarm which is going to modify its position;
Initialize iteration counter=0 and total iteration of GHLS, T;
while (¢t < T) do

Generate a new solution z},, using Algorithm 3;

Calculate the objective value f(z}..,):

if f(z},4) < f(Tpest) then

Thest = Lpegts

end if

t=t+1;
end while

In Algorithm 3, C, is the perturbation rate (between 0 and 1) which controls the
amount of perturbation in the solution, U(0, 1) is a uniform distributed random number
between 0 and 1, D is the dimension of the problem.

4. Grasshopper inspired ABC (GHABC)

Local search strategies are hybridized with optimization algorithms in the hope to im-
prove the exploitation capability of the algorithm. In this article, the developed GHLS
strategy is incorporated into the ABC algorithm to improve the convergence speed of
the ABC algorithm. The proposed algorithm is named as grasshopper inspired ABC
(GHABC). The pseudo-code of the proposed GHABC algorithm is depicted in Algo-
rithm 4.



Algorithm 3 New solution generation:

Input best solution xp.s from the population;
Randomly select a solution x; from the population;
Initialize the value of = 10 x t /* t is the current iteration counter */
for j =1to D do
if U(0,1) < C, then
/* C, is the perturbation rate, a constant in the range (0, 1) */
xgest]’ = Tpestj;
else
xé)estj = \/(mbestj)2 + (mbestj — .’Eij)z X sin(29);
end if
end for
Return .,

Algorithm 4 Grasshopper inspired Artificial Bee Colony Algorithm (GHABC):

Initialize the parameters;

while Termination criteria do
Step 1: Employed bee phase for generating new food sources;
Step 2: Onlooker bee phase for updating the food sources depending on their nectar
amounts;
Step 3: Scout bee phase for discovering the new food sources in place of abandoned
food sources;
Step 4: Apply Grasshopper local search (GHLS) phase using Algorithm 2.

end while

Print best solution.

It is clear from the Algorithm 4 that the GHLS strategy is incorporated after the scout
bee phase of the ABC algorithm. Therefore, in the proposed GHABC algorithm, the best
solution found after executing the employed, onlooker, and scout bee phases, is given more
chances to search in the vicinity with small step sizes to exploit the nearby area using
the GHLS strategy. This will improve the exploitation capability of the ABC algorithm.
Further, the incorporation of the GHLS strategy also improves the convergence ability
of the ABC algorithm which makes, the proposed GHABC, a cost effective algorithm in
terms of number of function evaluations.

5. Performance evaluation of GHABC algorithm

In this section the performance of the proposed GHABC algorithm is evaluated.

5.1. Benchmark problems

This set consists of 37 benchmark functions that are adopted from literature (Suganthan
et al., 2005; Bansal, Sharma, Jadon, & Clerc, 2014; Bansal, Sharma, Arya, & Nagar,
2013; H. Sharma, Bansal, Arya, & Yang, 2016). The definition and characteristic of the
functions are listed in Table 1.



5.2.

Parameter setting

For validating the performance of the proposed GHABC algorithm, following experimen-
tal setting is adopted:

The number of simulations/run =100,

Colony size NP = 50 and Number of food sources SN = NP/2,

¢i; = rand[—1,1] and limit=DimensionxNumber of food sources=D x SN
(Karaboga & Akay, 2011),

The terminating criteria: Either acceptable error (AE), mentioned in Table 1, meets
or maximum number of function evaluations (which is set to be 200000) is reached,
Parameter settings for the algorithms, ABC (Karaboga, 2005), black hole ABC
(BHABC) (N. Sharma, Sharma, Sharma, & Bansal, 2015), gbest guided ABC
(GABC) (Zhu & Kwong, 2010), best so far ABC (BSFABC) (Banharnsakun, Acha-
lakul, & Sirinaovakul, 2011), particle swarm optimization (PSO-2011) (Clerc &
Kennedy, 2011), differential evolution (DE) (Storn & Price, 1997), spider mon-
key optimization (SMO) (Bansal et al., 2014), memetic ABC (MeABC) (Bansal,
Sharma, Arya, & Nagar, 2013), GbestDE (Mokan, Sharma, Sharma, & Verma,
2014), and levy flight ABC (LFABC) (H. Sharma et al., 2016) are same as their
pioneer papers, respectively,

To set termination criteria of GHLS, the performance of GHABC is measured for
considered test problems on different values of T" and results are analysed in terms
of success in Fig. 2. It is clear from Fig. 2 that T" = 36 gives better results (highest
value of sum of success). Therefore, termination criteria is set to be T' = 36,

In order to investigate the impact of parameter C, (perturbation rate of local
search) depicted by Algorithm 3 on the performance of GHABC, its sensitivity
with respect to various values of C, in the range [0.1,1.0], is examined in the Fig.
3. It can be seen from Fig. 3 that the algorithm is exceptionally delicate towards c,
and it’s value 0.6 gives comparatively better results. Therefore ¢, = 0.6 is chosen
for the experiments in this paper.
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Table 1: Test problems.D: Dimensions, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N:

Non-Separable, AE: Acceptable Error

Test Problem Objective function Search Optimum Value D AE C
Range
Sphere filz) = EU:I x? [-5.12 5.12] F(6) =0 30 | 1.08—05 | 8, U
b _
De Jong f4 fa(z) =32 i(zy) [-5.12 5.12] @ =0 30 | 1.0E—05 | S, M
Griewank f3(@) =1+ Jo55 Doiq 27 — HD 1 COS(C”T) [-600 600] F@ =0 30 | 1.0E—05 | N, M
Rastrigin fa(x) = 10D + Zil [z — 10 cos(27x;)] - 12] F@ =0 30 | 1.0B—-05 | N, M
fs(x) =—-20+e+ eazp(—O—DQ\/Ei’;l x;3) [11] £(8) = 30 | 1.0E—05 | N, M
Ackley 1 D
—exp(p >_;—q cos (2ma;)x;)
Alpine folx) = Zgl |z;sin 2; + 0. 1azz| [-10 10] £(8) = 30 | 1.0E—05 | S, M
Michalewicz fr(x) = — ZD 18 sin x;(sin (”l )29) [0 ] Fomin = —9.66015 10 | 1.0E—05 | N, M
Cosine Mixture fs(x) = ZD Lz2 —0. I(Z -1 cos brw;) + 0.1D [11] F(@ =-Dx0.1 3 | L0E-05 | S, M
Exponential fo(z) = —(exp(—0.5 Zz—l @y )) + 1 [11] F@ = -1 30 | L0OE—05 | N,M
4
Zakharov fio(z) = ZD LT+ (Z ) (ZZ_ ) [-5.12 5.12] £0) = 30 | LoE—02 | N,M
Cigar fii(x) = 02 + 100000 Z i xZQ [-10 10] £(0) =04 30 | 1.0B—-05 | S, U
brown3 fi2(x) = ZD 11( x; 2(@i1) 1 + 412" H) [14] 7(0) = 30 | 1.0E—-05 | N, U
5 D _
Schewel fis(x) =D 0 |zl + TLLq | [-10 10] £(0) = 30 | 1L0E—05 | N, U
Salomon Problem | f1a(x) =1 — cos(2m Zi’;l z?) 4+ 0.1( Zi’;l z?) [-100 100] F@ =0 30 | 1.0B—-01 | N, M
Axis parallel | f15(2) = 22{11 i X x? [-5.12 5.12] £(8) = 30 | 1L.0E—05 | s, U
hyper-ellipsoid D 1
Sum of different | f16(2) = Y, 4 |xi|lJr 11 (@ =0 30 | 1.0E—-05 | s, M
powers
Step function fir(x) = Zzpzl (lz; +0.5])? [-100 100] f(-05<x<05) =0 30 | 1.0E — 05 ,
Inverted  cosine fig(x) = — ZF:EI exp Zlmit 7'+1;r0 i 1+1)) X I) [-5 5] f0)=—-D+1 10 1.0E — 05 , M
wave
D 2 D
i - = . —1 — . ST 2 p2 . = . —
Ezn(nﬁg)g prob- | fio(x) = ;2 (i )P — > il T D2 D?] JE'EE?DH(;)(D—U) 10 | 1.0E—01 | N,U
Rotated hyper- | foo(x) = Zi’;l E;:I z? [-65.536 (@ =0 30 | 1.0E—05 | S, M
ellipsoid 65.536]
Levy montalvo 1 | fa1(x) = %(IOSin2 (my1) + Zi}l(yl — 1?1 + | 1010 F1D =0 30 | 1.0B—-05 | N, M
10sin®(7y;+1)) + (yp — 1)?), where y; = 1 + +(z; + 1)
Ellipsoidal foz(z) = X2 (2 — )2 [-30 30] f(1,2,3,...,D) =0 30 | 1L.0OE—05 | S, U
Beale function fo3(z) = [1.5 — @1 (1 — 22)]% + [2.25 — 21 (1 — 12)] +[2.625 — zq (1 — x3))? [-4.5 4.5] £(3,0.5) =0 2 1.0E —05 | N, M
Colville function | faa(x) = 100[z2 — 23] + (1 — xl) +90(zy — 23)? + (1 [-10 10] M=o 4 | 10E-05 | N,M
23)? +10.1[(xg — 1) + (x4 — 1)?] +19.8(z2 — 1) (x4 — 1)

to be cont’d on next page
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Table 1: Test problems. D: Dimensions, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N

: Non-Separable, AE: Acceptable Error

Test Problem Objective function Search Optimum Value D AE C
5 Range
. N 23 @1 (b +bixa) 0 _ _
Kowalik fas(x) = 3272 [a; 7})%&23’“4] [-5 5] g.(loééggg?g,nglm 4 1.0E —05 | N, M
0.135766) = 0.000307486
2D Tripod func- | fo6(z) = p(x2)(1 + p(21)) + |(21 + 50p(z2)(1 — 2p(21)))| + | 100 100] £(0,—50) = 0 2 | 1oE-0a | N, M
o |(z2 +50(1 — 2p(z2)))|
Shifted  Rosen- | fo7(x) = Eiﬁ (100(22 — 2i41)% + (2i = D)?) + frias, 2 [-100 100] F(0) = frias = 390 10| 10E—o01 | s, M
brock r—o0+1, :1:; [1’171'2,....(13D], 0= [o1,02,...0p]
Shifted Sphere fas(x) = >, 22 + frias, 2 = T —0 & = [T1,T2,....Tp], | [100 100] F(0) = frias = —450 10 | 1.0E—05 | S, M
o = |o1,02,...0p .
Shifted Griewank | fog(x) = Zi’;l ngﬁ - HD 1 cos( \[) + 1+ foias, 2= (¥ —0), | [-600 600] F(0) = frins = —180 10 | 1.0E-05 | N,M
x = [x1,%2,....xp], 0 = [01,09,...0p]
Shifted Ackley fao(x) = —20 exp(—0.24/ % Zi’;l 22) — | 3232 F(0) = fiins = —140 10 | 1.0E—05 | 8, M
D
exp(% i1 c08(2mz)) + 20 4+ e + foias, 2 = (z — 0),
= (T1,2T2, e xp), 0= (01,03, ........ 021)))
Easom’s function | f31(2) = —cosxlcosmge((_(“_”) —(w2=m)%)) [-10 10] flm, m) = — 2 | 1.0E-13 | 8, M
Deiders and | fao(w) = 1022 + 23 — (22 + 23)% + 1075 (2? + 23)* [-20 20] f0,19) = f(0,-15) = | 2 | 50B-0L | N.M
arts —
McCormick fa3(x) = sin(zy + 22) + (21 — 22)? — —JC1 + 1:2 +1 1.5 < @y < | f(—0.547, ~1.547)= | 30 | 1.0E—04 | N, M
4,-3< 25 < | —1.9133
3
_\P t; 2 o 1s ) )
Meyer and Roth Jaa(x) =32, 5(% — i) [-10 10] 1(313,15.16,0.75) =] 3 |10E-03 | NU
Shubert fas(x) ==, jicos((i+1)xy+1) E _jicos((i+1)xa+1) | (10 10 £(7.0835, 4.8580) =] 2 | 10B-05 | s, M
186.7309
Sinusoidal fas(x) = —[A Hi’;l sin(x; — z) + Hi’;l sin(B(z; — 2))], A= | [01s0] FO0F2) = —(A+1) 10 | 1.0E—-02 | N,M
25,B=5,2=230
Moved axis paral- fg’?(.’lf) = ZzD:l 51 X .'L‘,L2 [- 12] = 30 1.0E — 15 S, U

lel hyper-ellipsoid

f(z) =0;2(i) =5 X 3,1
1:D




5.3. Results comparison for benchmark problems

For validating the performance of the proposed GHABC algorithm, it is compared with
the basic version of ABC (Karaboga, 2005), black hole ABC (BHABC) (N. Sharma et al.,
2015), gbest guided ABC (GABC) (Zhu & Kwong, 2010), best so far ABC (BSFABC)
(Banharnsakun et al., 2011), particle swarm optimization (PSO-2011) (Kennedy, 2011),
differential evolution (DE) (Storn & Price, 1997), gbest DE (Mokan et al., 2014), spider
monkey optimization (SMO) (Bansal et al., 2014), memetic ABC (MeABC) (Bansal,
Sharma, Arya, & Nagar, 2013), and levy flight ABC (LFABC) (H. Sharma et al., 2016).
The comparison is performed in terms of four parameters that are standard deviation
(SD), mean error (ME), average number of function evaluations (AF'E), and success
rate (SR). The reported results are demonstrated in Table 2. The obtained outcomes
demonstrate that GHABC is competitive than ABC and other considered SI based
algorithms for greater part of the benchmark test problems (7'Ps) independent of their
tendency either as far as separability, modality, and other parameters.

The proposed algorithm is also assessed by Mann-Whitney U rank sum test
(A. Sharma, Sharma, Bhargava, & Sharma, 2016a), acceleration rate (AR) (A. Sharma,
Sharma, Bhargava, & Sharma, 2016b), boxplots analysis (BP) (A. Sharma et al., 2016a),
and success performance (SP) (Qu, Liang, Suganthan, & Chen, 2014). The Mann-
Whitney U rank sum test is applied on AFEs. For all the considered algorithms the
experiment is performed at 5% significance level (o = 0.05) and the outcomes for 100
runs are recorded in Table 4.In this table, ‘+’ sign speaks to that GHABC is predominant
in examination with the other considered algorithm while ‘-’ sign demonstrates that the
other considered algorithm is unrivaled.

Table 4 shows that, in comparison with the other considered significant algorithms
GHABC has high caliber than all other considered algorithms for 20 T'Ps including
f1— fe, f10, fs, fis, fo0 and fog and f37 . GH ABC' performs better than basic ABC for
33 T'Ps, f1 — f6, fs — fo0, fos — for, and fog — f37. The GHABC shows better results
for 27 T'Ps when compared with BHABC algorithm, f1 — fg, fs — fis, fo0, fo5 — fos,
foo — f32, and fs5 — f37. The GHABC performs better for 25 T'Ps, fi — fe, fs — fo0,
foa — fag, f31, and f3g — f37 in comparison with GABC. The GHABC performs better for
35 T'Ps in comparison with BSFABC, fi — fs0, fs2 — f33, and f35 — f37. In comparison
with PSO—2011, GHABC pel"fOI"HlS better on 31 TPS, f1 - flg, f20 - f23, f26, f28 - f30,
f32 — f33, and f35 — f37. The outcomes for GHABC are better for 29 T'Ps in comparison
with DE, f1 — fis, fo0, fo5 — f29, f32 — f33, and f35 — f37. The GHABC shows better
results for 30 TPs, fi1 — fao, fo5 — for, fo9, f31 — f33, and f35 — f37r when compared
with GbestDE algorithm. The GH ABC performs better for 32 T'Ps, f1 — fis, foo — fo2,
fos — f30, f32 — f33, and f35 — f37 in comparison with SMO algorithm. The outcomes for
GHABC are better for 30 T'Ps in comparison with MeABC, f1 — fs, fs — fis, f20, fo1,
f23, f25 - f267 f28 - f34, and f37. While comparing with LFABC, GHABC shows better
results for 23 T'Ps, f1 — fis, f20, fo5, f26, f31, and f37.

The above investigation speaks to that GHABC is a focused candidate in the region
of SI based techniques.
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Table 2: Comparison of the results of benchmark test problems

Test Measure GHABC ABC BHABC GABC BSFABC PSO-2011 DE GbestDE SMO MeABC LFABC
Problem

SD 3.09E-06 1.56E-06 1.44E-06 1.81E-06 2.15E-06 7.55E-07 8.24E-07 6.64E-07 6.10E-07 8.10E-07 1.73E-06
f ME 3.91E-06 8.48E-06 8.53E-06 8.11E-06 7.49E-06 9.17E-06 9.06E-06 9.17E-06 9.33E-06 9.19E-06 8.39E-06
J1 AFE 642.32 13963.77 22304.92 14347.5 30063 38346 22444 15315.5 38101.5 19659.92 16733.85

SR 100 100 100 100 100 100 100 100 100 100 100

SD 2.41E-06 2.92E-06 2.63E-06 2.72E-06 3.12E-06 1.09E-06 8.51E-07 1.22E-06 8.62E-07 1.30E-06 3.02E-06

ME 1.55E-06 5.46E-06 5.75E-06 5.51E-06 5.31E-06 8.99E-06 9.01E-06 8.51E-06 9.03E-06 8.67E-06 6.62E-06
f2 AFE 481.61 5629.43 8687.05 8388 24524.5 32442 20859.5 12668.5 32596.5 6112.82 9556.12

SR 100 100 100 100 100 100 100 100 100 100 100

SD 3.03E-06 2.10E-03 1.03E-03 3.00E-06 2.97E-06 7.34E-03 4.52E-03 6.63E-07 7.12E-03 1.44E-06 2.03E-06

ME 3.11E-06 4.26E-04 1.54E-04 6.07E-06 5.67E-06 4.91E-03 2.05E-03 9.17E-06 3.87E-03 8.79E-06 7.95E-06
fs AFE 965.7 66525.21 44066 30455.3 62936.12 73624.5 64036.5 29589 113502.5 43249.74 40722.51

SR 100 96 97 100 100 63 81 100 84 100 100

SD 2.77E-06 2.34E-06 2.88E-06 2.75E-06 3.11E-06 2.24E+01 5.71IE4+00 | 5.92E+400 1.40E+01 1.76E-06 2.41E-06

ME 3.05E-06 7.58E-06 5.79E-06 6.38E-06 4.05E-06 4.30E+01 1.46E401 3.99E+00 3.87TE+01 8.29E-06 7.18E-06
fa AFE 848.38 39982.67 44384.12 34805 122759.5 100050 200050 189893.5 200050 57689.92 40644.63

SR 100 100 100 100 100 0 0 33 100 100 100

SD 2.86E-06 1.89E-06 1.85E-06 1.23E-06 1.74E-06 3.54E-07 3.94E-07 4.05E-07 3.66E-07 3.63E-07 1.16E-06
f ME 5.00E-06 8.12E-06 8.26E-06 8.91E-06 8.28E-06 9.67E-06 9.46E-06 9.58E-06 9.69E-06 9.64E-06 9.02E-06
J5 AFE 1193.77 62447.06 101840.09 30549 72368.5 TT172.5 42699 28916 77352 64481.82 35985.01

SR 100 100 100 100 100 100 100 100 100 100 100

SD 2.65E-06 2.66E-06 1.60E-06 1.85E-06 6.05E-06 1.55E400 4.40E-07 4.01E-07 3.23E-07 1.63E-06 1.03E-05
f ME 4.58E-06 7.82E-06 8.46E-06 8.32E-06 8.03E-06 2.30E-01 9.43E-06 9.54E-06 9.63E-06 8.57E-06 9.06E-06
J6 AFE 1030.21 75594.46 59016.04 54665.5 142277 90070 60983 51527 93046.5 104485.84 | 85238.42

SR 100 100 100 100 96 72 100 100 98 100 98

SD 3.96E-06 3.42E-06 3.71E-06 3.75E-06 3.56E-06 4.20E-01 4.84E-02 1.73E-02 2.34E-01 3.65E-06 1.31E-02

ME 4.35E-06 4.80E-06 4.32E-06 4.37TE-06 3.86E-06 4.20E-01 4.90E-02 3.69E-03 3.12E-01 5.61E-06 4.65E-03
f7 AFE 43060.21 20222.8 28283.24 20048.82 45347.49 99402.5 167536 45484 198326 21681.84 43496.55

SR 100 100 100 100 100 2 23 92 100 100 88

SD 2.54E-06 2.02E-06 2.39E-06 1.91E-06 2.43E-06 6.29E-02 2.90E-02 6.82E-07 5.68E-02 9.54E-07 2.22E-06

ME 2.78E-06 8.33E-06 7.72E-06 7.83E-06 6.97E-06 2.51E-02 5.92E-03 9.14E-06 2.22E-02 9.17E-06 7.84E-06
fs AFE 638.34 13632.1 35006.99 15420.5 32039 49744 30339 15464.5 63043.5 23565.56 17862.88

SR 100 100 100 100 100 85 96 100 88 100 100

SD 2.91E-06 1.85E-06 1.92E-06 1.53E-06 1.96E-06 6.08E-07 7.39E-07 8.54E-07 6.15E-07 6.83E-07 1.73E-06

ME 3.07E-06 8.15E-06 8.00E-06 8.18E-06 7.74E-06 9.32E-06 8.99E-06 9.10E-06 9.33E-06 9.30E-06 8.16E-06
fo AFE 508.21 7160.7 17656.91 11875 18678.5 28182.5 17018 11765 28227.5 9987.18 14205.4

SR 100 100 100 100 100 100 100 100 100 100 100

SD 2.53E-03 1.61E+01 1.84E+401 1.58E+401 1.22E+401 1.63E+400 5.20E-04 8.13E-04 1.80E-02 5.03E-04 1.57E+401
7 ME 5.33E-03 6.11E+01 1.01E4-02 9.76E+01 8.38E+01 2.60E+-00 9.47E-03 9.23E-03 2.20E-02 9.56E-03 1.13E4-02
J10 AFE 2821.42 200025.72 200000.31 200000.01 200000 100050 68154.5 171519.5 196434 100752.87 | 200040

SR 100 0 0 0 0 0 100 100 100 99 0

SD 2.99E-06 2.19E-06 2.3TE-06 1.87E-06 2.46E-06 7.36E-07 8. 7TE-07 8.15E-07 6.96E-07 1.22E-06 1.65E-06

ME 3.15E-06 7.96E-06 7.55E-06 7.83E-06 7.24E-06 9.27E-06 8.89E-06 9.11E-06 9.29E-06 8.90E-06 8.84E-06
fu AFE 1138.09 43029.9 61286.27 23043 62034.5 68942.5 39664.5 27123.5 69125.5 47579.82 24546.79

SR 100 100 100 100 100 100 100 100 100 100 100

SD 2.94E-06 1.60E-06 2.06E-06 1.97E-06 1.99E-06 6.08E-07 9.48E-07 7.40E-07 6.26E-07 9.02E-07 1.58E-06

ME 3.41E-06 8.36E-06 8.04E-06 7.86E-06 7.73E-06 9.23E-06 8.94E-06 9.09E-06 9.24E-06 9.12E-06 8.55E-06
fr2 AFE 634.36 14830.27 23739.99 14076 31207.5 35048 22003.5 15034 35048.5 20632.76 16111.3

SR 100 100 100 100 100 100 100 100 100 100 100

to be cont’d on next page
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Table 2: Comparison of the results of benchmark test problems (Cont.)

Test Measure GHABC ABC BHABC GABC BSFABC PSO-2011 DE GbestDE SMO MeABC LFABC
Problem

SD 2.66E-06 6.60E-07 8.78E-07 7.84E-07 1.45E-06 4.08E-07 5.43E-07 4.53E-07 3.09E-07 3.43E-07 8.04E-07
f ME 5.20E-06 9.45E-06 9.24E-06 9.22E-06 8.68E-06 9.56E-06 9.32E-06 9.48E-06 9.61E-06 9.63E-06 9.34E-06
J13 AFE 1201.97 48054.88 122848.9 27693 53027.5 70901.5 45017 26715 70794.5 54120.92 30994.7

SR 100 100 100 100 100 100 100 100 100 100 100

SD 2.32E-01 8.66E-02 4.45E-02 3.35E-02 6.82E-02 8.01E-02 9.95E-03 1.40E-02 5.53E-02 3.82E-02 4.45E-02

ME 6.76E-01 9.75E-01 9.33E-01 9.33E-01 9.56E-01 3.98E-01 2.01E-01 2.02E-01 2.88E-01 9.22E-01 9.39E-01
f1a AFE 346.93 139235.63 | 94411.64 85618.12 186319.67 100003 58843 104523.5 200050 23006.5 101452.43

SR 100 57 97 95 73 1 99 97 13 100 87

SD 2.95E-06 1.96E-06 2.33E-06 1.97E-06 2.32E-06 7.15E-07 8.56E-07 7.07E-07 6.37TE-07 8.73E-07 1.70E-06

ME 3.47E-06 8.08E-06 7.94E-06 8.01E-06 7.13E-06 9.24E-06 9.00E-06 9.11E-06 9.33E-06 9.15E-06 8.43E-06
f1s AFE 738.76 19417.41 25433.47 15925 36685.5 43706 25889 17655 44374.5 25677.84 18093.08

SR 100 100 100 100 100 100 100 100 100 100 100

SD 3.12E-06 2.83E-06 2.40E-06 2.60E-06 2.72E-06 9.32E-02 2.20E-06 1.93E-06 1.38E-06 3.82E-01 3.13E-06

ME 2.84E-06 4.90E-06 6.55E-06 6.12E-06 5.84E-06 2.75E4-00 7.15E-06 7.43E-06 8.48E-06 3.23E+400 5.86E-06
fie AFE 359.31 19776.19 7104.52 9392.5 14434 100050 7795.5 5704 9897 200024.31 7523.66

SR 100 100 100 100 100 0 100 100 100 0 100

SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.41E-06 3.32E-01 0.00E+00 0.00E+00 | 3.07E-06 0.00E+00
7 ME 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.33E-06 1.00E-01 0.00E+00 0.00E+00 | 5.13E-06 0.00E+00
Jar AFE 474.54 7089.94 9030.52 8951 36988 9786.5 33846.5 10470 35050 7240.66 10863.2

SR 100 100 100 100 100 100 91 100 100 100 100

SD 2.71E-06 7.33E-02 2.33E-06 2.39E-06 1.99E-01 5.56E-01 6.30E-01 1.56E-06 6.06E-01 4.54E-01 4.27TE-05
f ME 2.93E-06 1.06E-02 7.20E-06 6.83E-06 6.09E-02 1.04E401 8.93E-01 8.24E-06 1.40E400 | 9.31E+00 1.27E-05
J18 AFE 659.72 114061.2 70078.06 47688.66 123141.06 100050 176110.5 47035 198670 200010.81 42442.21

SR 100 84 100 100 85 0 17 100 100 0 99

SD 1.52E-01 3.12E+00 4.96E-02 1.19E+00 5.34E4+00 6.05E-01 1.41E-06 4.89E-02 4.30E-07 2.71E-04 6.84E-02

ME 1.14E-01 3.20E+00 1.00E-01 1.21E400 4.16 E+00 1.58E4-00 8.25E-06 9.02E-03 9.57E-06 3.52E-05 1.07E-01
f1o AFE 121685.11 200052.16 110353.66 196770.68 199822.64 99659.5 17251 165772 67426.5 49036.82 39650.81

SR 99 0 96 5 1 2 100 65 85 99 95

SD 3.03E-06 2.14E-06 2.56E-06 2.01E-06 2.29E-06 6.74E-07 8.63E-07 8.21E-07 8.13E-07 1.40E-02 1.99E-06

ME 3.23E-06 7.84E-06 6.97E-06 7.74E-06 7.29E-06 9.46E-06 8.90E-06 9.08E-06 9.20E-06 8.56E-02 8.51E-06
f20 AFE 948.06 31029.82 28894.12 19477 49425 65973.5 32927 22365 56547 36913.97 21192.18

SR 100 100 100 100 100 100 100 100 100 100 100

SD 1.99E-06 2.85E-06 1.75E-06 2.13E-06 2.52E-06 6.40E-07 7.33E-07 7.93E-07 1.77E-02 1.15E-06 1.75E-06

ME 7.75E-06 6.93E-06 7.88E-06 7.84E-06 6.72E-06 9.34E-06 9.15E-06 9.07E-06 3.12E-03 8.95E-06 8.27E-06
fa1 AFE 21739.1 10355.32 12163.02 13128.5 26570.5 56626.5 19941 14373 37764.5 36702.66 15263.63

SR 100 100 100 100 100 100 100 100 100 100 100

SD 1.81E-06 2.38E-06 2.33E-06 1.81E-06 2.63E-06 4.03E-03 7.39E-07 7.81E-07 5.56E-07 6.71E-07 1.97E-06
f ME 7.83E-06 7.44E-06 7.71E-06 7.93E-06 7.11E-06 1.77E-03 9.07E-06 9.12E-06 9.33E-06 9.33E-06 8.07E-06
J22 AFE 32466.2 23156.54 23504.76 16625.5 40983.5 46168 27209 17831.5 44306 19093.96 18653.59

SR 100 100 100 100 100 84 100 100 100 100 100

SD 2.96E-06 2.73E-06 2.95E-06 2.93E-06 1.69E-05 7.58E-07 2.9TE-06 3.15E-06 2.8TE-06 1.21E-06 2.84E-06

ME 5.34E-06 7.24E-06 5.49E-06 5.33E-06 1.28E-05 9.19E-06 4.95E-06 5.23E-06 4.96E-06 9.01E-06 7.52E-06
fas AFE 14849.56 34002.38 7259.59 8701.35 49064.36 44060.5 1413 4454.5 2753.5 29262.18 3746.11

SR 100 100 100 100 92 100 100 100 100 100 100

SD 5.74E-03 1.07E-01 1.89E-03 1.42E-02 3.19E-02 2.83E-06 3.41E-01 2.65E-03 2.24E-04 2.87E-06 1.29E-03

ME 1.22E-02 1.56E-01 8.26E-03 1.63E-02 2.62E-02 4.83E-06 4.62E-02 1.75E-03 8.13E-04 4.24E-06 9.19E-03
faa AFE 138652.39 | 200085.97 | 63024.92 159243.54 153739 2715 22950 105190.5 48776.5 5358.3 65107.64

SR 57 0 99 42 44 100 91 70 100 100 100

to be cont’d on next page
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Table 2: Comparison of the results of benchmark test problems (Cont.)

Test Measure GHABC ABC BHABC GABC BSFABC PSO-2011 DE GbestDE SMO MeABC LFABC
Problem

SD 2.04E-05 7.16E-05 1.65E-05 2.31E-05 7.91E-05 3.26E-05 3.64E-04 1.80E-04 1.18E-05 7.30E-06 1.79E-04
f ME 8.01E-05 1.69E-04 8.71E-05 8.76E-05 1.53E-04 4.52E-05 2.82E-04 1.92E-04 8.97E-05 6.59E-06 1.37E-04
J25 AFE 6549.21 182713.19 | 62584.17 99509.94 150752.09 2347.5 63860 154021 35865 41316.66 61386.26

SR 100 21 100 92 45 100 70 40 100 80 95

SD 3.12E-05 2.73E-05 2.54E-05 2.29E-05 1.98E-04 1.13E-05 1.40E-01 1.92E-02 2.71E-01 3.19E-05 2.37E-01

ME 4.58E-05 5.87E-05 6.29E-05 6.36E-05 8.56E-05 9.03E-05 2.00E-02 1.93E-03 8.01E-02 9.05E-05 6.01E-02
f26 AFE 4467.44 18836.4 11497.4 8726.06 6208.54 37771 8249.5 41654 29745.5 96233.48 17885.73

SR 100 100 100 100 99 100 98 97 100 86 94

SD 2.87E-01 9.28E-01 3.66E+00 4.72E-02 3.95E+00 3.67E-01 2.25E4+00 | 3.57E+00 1.08E+01 2.45E-05 7.64E-01

ME 1.90E-01 5.36E-01 6.67TE-01 9.33E-02 2.32E4-00 1.64E-01 2.25E400 | 3.69E400 2.92E400 | 6.11E-05 2.53E-01
far AFE 137809.2 175910.33 120130.27 104982 191465.22 29248 186125 181873 187162.5 9471.7 66632.89

SR 72 24 80 94 11 83 8 14 42 100 95

SD 2.04E-06 2.57E-06 2.28E-06 2.13E-06 2.49E-06 2.51E+01 1.52E-06 1.62E-06 1.50E-06 1.47E+00 2.36E-06

ME 7.13E-06 6.93E-06 7.22E-06 7.07E-06 6.94E-06 8.38E+00 8.06E-06 7.93E-06 8.29E-06 7.76E-01 7.27E-06
fas AFE 9552.14 8922.32 8838.87 5577.5 18117 98430.5 10364.5 7751 15785.5 148560.23 | 6203.32

SR 100 100 100 100 100 3 100 100 100 39 100

SD 1.42E-03 3.02E-03 2.39E-03 7.35E-04 6.18E-03 4.61E+03 1.38E-02 1.62E-02 2.87E-02 3.60E+03 7.35E-04
; ME 2.62E-04 1.16E-03 8.61E-04 7.90E-05 4.58E-03 2.17E+403 1.37E-02 1.71E-03 4.05E-02 1.29E+04 8.01E-05
J29 AFE 67282.34 87111.25 91174.8 42366.85 118467.79 100050 153524 68046 197491 200018.88 | 40382.88

SR 95 85 88 99 58 0 30 98 81 0 99

SD 1.52E-06 1.85E-06 2.05E-06 1.28E-06 1.93E-06 5.61E-02 8.90E-07 9.32E-07 1.05E-06 3.13E-06 1.34E-06
f ME 8.30E-06 8.09E-06 7.68E-06 8.64E-06 8.13E-06 6.59E-02 8.90E-06 8.91E-06 8.93E-06 5.98E-06 8.66E-06
J30 AFE 15737.84 23391.88 71048.93 9321 31326.5 100050 15453.5 11739.5 24630 35602.37 10934.63

SR 100 100 100 100 100 0 100 100 100 100 100

SD 3.06E-14 3.46E-05 2.97E-14 2.81E-14 3.00E-14 2.96E-14 3.02E-14 2.98E-14 2.92E-14 1.35E-07 3.28E-14

ME 4.27E-14 9.53E-06 4.97E-14 4.29E-14 3.88E-14 5.35E-14 4.79E-14 4.59E-14 4.82E-14 2.03E-08 5.60E-14
fs1 AFE 11240.27 188862.04 | 86195.05 48895.67 4677.1 9773.5 4815 11289 9796.5 84658.38 14065.55

SR 100 13 100 100 100 100 100 100 100 82 100

SD 5.52E-03 5.52E-03 5.77E-03 5.37E-03 5.28E-03 5.42E-03 5.14E-03 5.03E-03 5.55E-03 1.39E-05 5.68E-03

ME 4.88E-01 4.89E-01 4.91E-01 4.90E-01 4.91E-01 4.91E-01 4.90E-01 4.91E-01 4.92E-01 1.91E-05 4.91E-01
fa2 AFE 885.19 3145.86 946.24 775 2800.72 4966.5 2154.5 2550.5 5050 120379.15 | 687.8

SR 100 100 100 100 100 100 100 100 100 40 100

SD 6.60E-06 6.95E-06 6.65E-06 6.43E-06 6.44E-06 6.61E-06 6.52E-06 6.75E-06 6.86E-06 5.61E-03 6.96E-06

ME 8.82E-05 8.80E-05 8.83E-05 8.85E-05 8.71E-05 8.80E-05 8.80E-05 8.86E-05 8.84E-05 4.89E-01 9.04E-05
fs3 AFE 922.61 1772.87 800.09 602.5 1013.58 1487 998 1710 1445 1555.31 587.42

SR 100 100 100 100 100 100 100 100 100 100 100

SD 2.88E-06 2.97E-06 3.07E-06 2.95E-06 2.64E-06 3.12E-06 1.62E-05 2.88E-06 2.93E-06 6.57E-06 3.1I0E-06
f ME 1.95E-03 1.94E-03 1.95E-03 1.94E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 6.40E-06 1.95E-03
J34 AFE 21458.41 29064.93 4761.02 5094.92 17641.71 3262 3927 3341.5 3092 36397.37 3418.07

SR 100 100 100 100 100 100 99 100 100 82 100

SD 5.62E-06 5.58E-06 5.78E-06 5.76E-06 5.76E-06 2.49E-03 5.31E-06 5.62E-06 1.37E-03 6.87E-06 5.83E-06

ME 5.16E-06 4.93E-06 5.10E-06 5.16E-06 5.11E-06 7.10E-04 4.62E-06 5.22E-06 3.12E-04 8.73E-05 5.16E-06
fas AFE 3855.44 9968.97 7917.47 2468.49 9396.07 46715 8414.5 9121 90199 807.76 1619.34

SR 100 100 100 100 100 67 100 100 100 100 100

SD 3.08E-03 1.75E-03 1.82E-03 2.42E-03 1.90E-03 3.47TE-01 2.36E-01 8.27E-03 2.94E-01 2.90E-06 1.67E-03

ME 5.18E-03 7.71E-03 7.78E-03 7.53E-03 7.91E-03 7.13E-01 5.57E-01 1.18E-02 4.39E-01 1.95E-03 8.35E-03
fs6 AFE 25081.83 62307.88 42023.26 49473.76 63543.15 96757 198935 145212.5 181097.5 9907.84 22030.31

SR 100 100 100 99 100 9 2 68 63 100 100

SD 2.72E-16 1.28E-16 5.52E-11 1.20E-16 2.40E-16 2.16E-14 8. 74E-17 8.86E-17 6.12E-17 5.27E-06 1.09E-16

ME 3.04E-16 8.31E-16 1.84E-11 8.43E-16 7.12E-16 1.42E-14 9.01E-16 9.10E-16 9.29E-16 4.50E-06 8.75E-16
for AFE 1672.4 85143.78 200024.42 38559.5 71183.5 100022 59418 40955 104872.5 5404.81 44903

SR 100 100 0 100 100 4 100 100 100 100 100
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Table 3: Comparison based on Acceleration Rate (AR)
TP:Test Problem

TP | GHABC GHABC GHABC GHABC GHABC GHABC GHABC GHABC GHABC GHABC
Vs ABC Vs Vs Vs BS- | Vs PSO- | Vs DE Vs Vs SMO Vs Vs
BHABC GABC FABC 2011 GbestDE MeABC LFABC
fi 21.740 34.726 22.337 46.804 59.699 34.942 23.844 59.319 30.608 26.052
f2 11.689 18.038 17.417 50.922 67.362 43.312 26.304 67.682 12.692 19.842
f3 68.888 45.631 31.537 65.172 76.240 66.311 30.640 117.534 44.786 42.169
fa 47.128 52.316 41.025 144.699 117.931 235.802 223.831 235.802 68.000 47.909
f5 52.311 85.310 25.590 60.622 64.646 35.768 24.222 64.796 54.015 30.144
fe 73.378 57.285 53.062 138.105 87.429 59.195 50.016 90.318 101.422 82.739
fr 0.470 0.657 0.466 1.053 2.308 3.891 1.056 4.606 0.504 1.010
I3 21.356 54.841 24.157 50.191 77.927 47.528 24.226 98.762 36.917 27.983
fa 14.090 34.743 23.366 36.754 55.454 33.486 23.150 55.543 19.652 27.952
f1o 70.895 70.886 70.886 70.886 35.461 24.156 60.792 69.622 35.710 70.900
f11 37.809 53.850 20.247 54.508 60.577 34.852 23.832 60.738 41.807 21.568
fiz2 23.378 37.424 22.189 49.195 55.249 34.686 23.699 55.250 32.525 25.398
fi3 39.980 102.206 23.040 44.117 58.988 37.453 22.226 58.899 45.027 25.787
f1a 401.336 272.135 246.788 537.053 288.251 169.611 301.281 576.629 66.315 292.429
fis 26.284 34.427 21.556 49.658 59.161 35.044 23.898 60.066 34.758 24.491
fie 55.039 19.773 26.140 40.171 278.450 21.696 15.875 27.544 556.690 20.939
fir 14.941 19.030 18.862 77.945 20.623 71.325 22.063 73.861 15.258 22.892
fis 172.893 106.224 72.286 186.657 151.655 266.947 71.295 301.143 303.175 64.334
f19 1.644 0.907 1.617 1.642 0.819 0.142 1.362 0.554 0.403 0.326
f20 32.730 30.477 20.544 52.133 69.588 34.731 23.590 59.645 38.936 22.353
fo1 0.476 0.559 0.604 1.222 2.605 0.917 0.661 1.737 1.688 0.702
fa2 0.713 0.724 0.512 1.262 1.422 0.838 0.549 1.365 0.588 0.575
f23 2.290 0.489 0.586 3.304 2.967 0.095 0.300 0.185 1.971 0.252
foa 1.443 0.455 1.149 1.109 0.020 0.166 0.759 0.352 0.039 0.470
fos 27.899 9.556 15.194 23.018 0.358 9.751 23.517 5.476 6.309 9.373
fo6 4.216 2.574 1.953 1.390 8.455 1.847 9.324 6.658 21.541 4.004
for 1.276 0.872 0.762 1.389 0.212 1.351 1.320 1.358 0.069 0.484
fas 0.934 0.925 0.584 1.897 10.305 1.085 0.811 1.653 15.553 0.649
f29 1.295 1.355 0.630 1.761 1.487 2.282 1.011 2.935 2.973 0.600
f30 1.486 4.515 0.592 1.991 6.357 0.982 0.746 1.565 2.262 0.695
f31 16.802 7.668 4.350 0.416 0.870 0.428 1.004 0.872 7.532 1.251
fa2 3.554 1.069 0.876 3.164 5.611 2.434 2.881 5.705 135.992 0.777
f33 1.922 0.867 0.653 1.099 1.612 1.082 1.853 1.566 1.686 0.637
f3a 1.354 0.222 0.237 0.822 0.152 0.183 0.156 0.144 1.696 0.159
f35 2.586 2.054 0.640 2.437 12.117 2.183 2.366 23.395 0.210 0.420
f36 2.484 1.675 1.972 2.533 3.858 7.931 5.790 7.220 0.395 0.878
fa7 50.911 119.603 23.056 42.564 59.807 35.529 24.489 62.708 3.232 26.849
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Table 4: Comparison based on Mann-Whitney U rank sum test at significant level o = 0.05 and average number of function evaluations

TP: Test Problem

TP GHABC GHABC GHABC GHABC GHABC GHABC GHABC GHABC GHABC GHABC
Vs ABC Vs Vs Vs BS- Vs PSO- Vs DE Vs Vs SMO Vs Vs
BHABC GABC FABC 2011 GbestDE MeABC LFABC
fi + + + + + + + + + +
f2 + + + + + + + + + +
I3 + + + + + + + + + +
fa + + + + + + + + + +
fs + + + + + + + + + +
fe + + + + + + + + + +
fr - - - + + + + + - +
fs + + + + + + + + + +
fo + + + + + + + + + +
f1o + + + + + + + + + +
fi + + + + + + + + + +
fiz2 + + + + + + + + + +
fi3 + + + + + + + + + +
fia + + + + + + + + + +
fis + + + + + + + + + +
fie + + + + + + + + + +
fi7 + + + + + + + + + +
fis + + + + + + + + + +
fio + - + + - - + - - -
f20 + + + + + + + + + +
fa1 - - - + + - - + + -
f22 - - - + + - - + - -
fas + - - + + - - - + -
f2a + - + + - - - - - -
f2s + + + + - + + + + +
f26 + + + + + + + + + +
far + - - + - + + + - -
fas - - - + + + - + + -
f29 + + - + + + + + + -
f30 + + - + + - - + + -
fa1 + + + - - - + - + +
f32 + + - + + + + + + -
fas + - - + + + + + + -
f3a + - - - - - - - + -
fas + + - + + + + + - -
fae + + + + + + + + - -
f37 + + + + + + + + + +

w
w

30




The boxplots examination has likewise been performed for a correlation with respect to
solidified performance of all considered algorithms. The boxplots investigation represents
the graphical distribution of empirical data in an efficient manner. The boxplots for
GHABC and other considered algorithms are depicted in Fig. 4. It is clear from the
Fig. 4, that GHABC performs better than other considered algorithms as median and
interquartile range is quite low.

x10°
T

'
15) '
.

1.00408a4004

GHABC ABC BHABC GABC BSFABC PSO DE GbestDE SMO MeABC LFABC

Average number of function evaluations

Figure 4: Boxplots graphs for average number of function evaluations

Further, comparison is also performed in terms of success performance (SP) (Qu et al.,
2014). The SP is defined by the following Eq. 8 :

AFFEsrco
SP=——" 8
SRarco ®

Here, AFEsrco is the AFEs and SRarco is SR for the considered algorithm. An
algorithm that is consuming less number of function evaluations and yielding higher SR
is considered better. Hence smaller values of SP are desirable. The value of SP is not
defined when SR is 0. The SP for proposed GHABC and other considered algorithms
are calculated and the obtained values are listed in the Table 5. The results show that
SP of GHABC is better than the other considered algorithms. In Table 5, SP is not
defined for the functions, fi1, fi0, fi6, fis, f19, foa, f29, f30, and f37 as the value of SR
is equal to 0 in any of the algorithm.

18



61

Table 5: Comparison based on Success Performance (SP)
TP:Test Problem

TP GHABC ABC BHABC GABC BSFABC PSO-2011 | DE GbestDE SMO MeABC LFABC
f1 6.423 139.638 223.049 143.475 300.630 383.460 224.440 153.155 381.015 196.599 167.339
f2 4.816 56.294 86.871 83.880 245.245 324.420 208.595 126.685 325.965 61.128 95.561
f3 9.657 692.971 454.289 304.553 629.361 1168.643 790.574 295.890 1351.220 432.497 407.225
fs 11.938 624.471 1018.401 305.490 723.685 771.725 426.990 289.160 773.520 644.818 359.850
fe 10.302 755.945 590.160 546.655 1482.052 1250.972 609.830 515.270 949.454 1044.858 869.780
fr 430.602 202.228 282.832 200.488 453.475 49701.250 7284.174 494.391 1983.260 216.818 494.279
fs 6.383 136.321 350.070 154.205 320.390 585.224 316.031 154.645 716.403 235.656 178.629
fo 5.082 71.607 176.569 118.750 186.785 281.825 170.180 117.650 282.275 99.872 142.054
fi1 11.381 430.299 612.863 230.430 620.345 689.425 396.645 271.235 691.255 475.798 245.468
fi2 6.344 148.303 237.400 140.760 312.075 350.480 220.035 150.340 350.485 206.328 161.113
fi3 12.020 480.549 1228.489 276.930 530.275 709.015 450.170 267.150 707.945 541.209 309.947
f1a 3.469 2442.730 973.316 901.243 2552.324 100003.000 594.374 1077.562 15388.462 230.065 1166.120
fis 7.388 194.174 254.335 159.250 366.855 437.060 258.890 176.550 443.745 256.778 180.931
fi7 4.745 70.899 90.305 89.510 369.880 97.865 371.940 104.700 350.500 72.407 108.632
f20 9.481 310.298 288.941 194.770 494.250 659.735 329.270 223.650 565.470 369.140 211.922
fo1 217.391 103.553 121.630 131.285 265.705 566.265 199.410 143.730 377.645 367.027 152.636
fo2 324.662 231.565 235.048 166.255 409.835 549.619 272.090 178.315 443.060 190.940 186.536
fo3 148.496 340.024 72.596 87.014 533.308 440.605 14.130 44.545 27.535 292.622 37.461
fas 65.492 8700.628 625.842 1081.630 3350.046 23.475 912.286 3850.525 358.650 516.458 646.171
f26 44.674 188.364 114.974 87.261 62.713 377.710 84.179 429.423 297.455 1118.994 190.274
for 1914.017 7329.597 1501.628 1116.830 17405.929 352.386 23265.625 12990.929 4456.250 94.717 701.399
fos 95.521 89.223 88.389 55.775 181.170 32810.167 103.645 77.510 157.855 3809.237 62.033
f31 112.403 14527.849 861.951 488.957 46.771 97.735 48.150 112.890 97.965 1032.419 140.656
f32 8.852 31.459 9.462 7.750 28.007 49.665 21.545 25.505 50.500 3009.479 6.878
f33 9.226 17.729 8.001 6.025 10.136 14.870 9.980 17.100 14.450 15.553 5.874
f34 214.584 290.649 47.610 50.949 176.417 32.620 39.667 33.415 30.920 443.870 34.181
f35 38.554 99.690 79.175 24.685 93.961 697.239 84.145 91.210 901.990 8.078 16.193
f36 250.818 623.079 420.233 499.735 635.432 10750.778 99467.500 2135.478 2874.563 99.078 220.303




6. Conclusion and future works

This article proposes a local search technique based upon the grasshopper jumping mech-
anism, namely grasshopper local search (GHLS). The proposed GHLS strategy is incor-
porated into artificial bee colony (ABC) algorithm to improve the exploitation capability
and convergence speed of the algorithm. Thus modified strategy is named as grasshopper
inspired ABC (GHABC). To validate the performance, the proposed GHABC has been
assessed by standard benchmark test problems and compared with other state-of-art al-
gorithms. The numerical experiments and analyses depict the validity of the proposed
approach. It can be concluded that GHABC algorithm is a good choice to find solution
of numerical optimization problems.
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