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Abstract
BBO is one of the emerging meta-heuristic optimizer. It is based on sharing the features among islands. This study proposes
a hybrid algorithm obtained by incorporating fireworks explosion concept of Fireworks Algorithm into biogeography-based
optimization. The hybrid algorithm is named as fireworks-inspired biogeography-based optimization (FBBO). The key feature
in the proposed FBBO algorithm is the hybridization of two different searching skills to improve solution quality. FBBO
provides a better balance between solution diversification and intensification. The proposed algorithm is tested on CEC 2014
benchmark problems. Numerical experiments demonstrate its effectiveness and accuracy.

Keywords Biogeography-based optimization · Fireworks algorithm · Hybridization · CEC 2014 benchmarks

1 Introduction

Computational intelligence is a set of nature-inspired com-
putational methodologies and approaches to solve complex
real-world optimization problems. Two paradigms of com-
putational intelligence are evolutionary computation and
swarm computation. Now a days evolutionary and swarm
computation techniques are a very favorable area for the
researchers in the field of numerical optimization. Evolu-
tionary computation is the collection of problem-solving
techniques such as evolutionary algorithm, differential evo-
lution and genetic algorithms. These techniques are usually
implemented in the computer systems. Evolutionary com-
putation is based on the theory of biological evolution that
is used to create optimization procedures to solve complex
problems. Evolutionary algorithm is the part of evolution-
ary computation is inspired by biological evolution such as
reproduction, mutation, recombination, natural selection and
survival of the fittest. Genetic algorithms, genetic program-
ming, evolutionary programming, and evolutionary strategy
are associated with evolutionary algorithm. Swarm compu-
tation (swarm optimization or swarm intelligence) is the
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collective behavior of decentralized, self-organized systems.
Swarm computation based on the social behavior of organ-
ism living in swarms or colonies. In the modern era, we are
gaining inspiration from nature. Till the mid-1990s, swarm
intelligence approach is considered under evolutionary com-
putation approaches due to their inherent similarities such
as the use of population, stochastic nature, application field
as well as computer scientists those were familiar with these
approaches.

In the literature, BBOhas various developments and appli-
cations in various fields. The most recent survey on BBO can
found in Garg and Deep (2015), Guo et al. (2016) and Ma
et al. (2017). BBO is very sensitive to its operators. Migra-
tion and mutation are two very crucial operators in BBO.
Migration operator is responsible for sharing the informa-
tion within candidates. The solution quality of candidate
highly depends on the migration operator. Mutation operator
is responsible to maintain diversity of population. Therefore,
in BBO algorithm, there have been lots of developments
done by improving the existing operators and by incorpo-
rating new operators. Some advanced migration (Ma and
Simon 2011; Feng et al. 2014; Xiong et al. 2014; Wang
et al. 2014; Farswan and Bansal 2015; Farswan et al. 2016;
Garg and Deep 2016; Bansal et al. 2018), mutation (Gong
et al. 2010b; Lohokare et al. 2013; Bansal 2016) and new
operators (Simon et al. 2014; Bansal and Farswan 2016) are
developed earlier. Ma and Simon (2011) proposed Blended
BBO (BBBO) to solving constrained optimization problems.
In BBBO, blended information is utilized in migration oper-
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ator, i.e., immigrating island accepts the information from
itself as well as emigrating island. Feng et al. (2014) pro-
posed an improved BBO (IBBO) using improving migration
operator. Xiong et al. (2014) proposed polyphyletic BBO
(POLBBO) by incorporating polyphyletic migration opera-
tor. Wang et al. (2014) introduced the krill herd algorithm
with new migration operator in BBO. Gong et al. (2010b)
have applied perturbation in the form of various mutation
operators, namely Gaussian mutation, Cauchy mutation and
Lévy mutation. Lohokare et al. (2013) proposed a memetic
algorithm named as accelerated biogeography-based opti-
mization embedded with a modified differential evolution as
a neighborhood search operator (aBBOmDE), for improv-
ing convergence speed by modifying mutation operator
and maintained exploitation by keeping original migration.
Simon et al. (2014) proposed LBBO (linearized BBO) for
improving solution of non-separable problems. LBBO com-
binedwith periodic re-initialization and local search operator
and obtained the algorithm for global optimization in a con-
tinuous search space. Bansal and Farswan (2016) proposed
DisruptBBO (DBBO) by incorporating a novel disruption
operator in BBO algorithm to improve its exploration and
exploitation capability.

Further, BBO has applications in various fields such as
communication (Ma et al. 2014; Boussaid et al. 2011), image
processing (Zhang et al. 2017; Wang et al. 2013b), mechan-
ical engineering and design (Guo et al. 2014), medicine
(Rashid et al. 2011), power system (Christy and Raj 2014;
Roy et al. 2010; Rarick et al. 2009; Bansal and Farswan 2016)
and energy (Niu et al. 2014;Bansal andFarswan2017;Bansal
et al. 2018).

Although, various variants of BBO have developed based
on tuning of migration and mutation operators of BBO algo-
rithm. However, this study gives new insights by hybridizing
the two meta-heuristic algorithms. Many hybrid NIAs have
been proposed to improve performance and to find global
optima. The hybridization of the two different searching
skills is embedded to improve solution quality. In the litera-
ture, recent development of the problem and the algorithm,
especially the hybridization of differentmeta-heuristics, such
as hybridization of TLBO (teaching–learning-based opti-
mization) algorithm (Duan et al. 2018), hybridization of
local search and global search heuristics (Li et al. 2018),
hybridization of ABC (artificial bee colony) and problem-
specific heuristic (Li et al. 2016), hybridization of invasive
weed optimization (Zheng and Li 2018), and the realistic
problem as a hybrid flow shop (HFS) scheduling problem
is solved using an effective fruit fly optimization algorithm
(FOA) (Li et al. 2014) algorithm.

In the literature, BBO is hybridized with several meta-
heuristic algorithms given in Table 1. The development of
new hybrid NIAs and strategies are worthy of further inves-
tigation. Current research directions in hybrid NIAs involve

several major areas. The first area is the determination of
how to hybridize a given set of NIAs into a single algo-
rithm; that is, how to determine the hybridization strategy.
The second area is the determination of which NIAs to com-
bine in a hybrid algorithm. The third area is the application
of hybrid NIAs to special types of optimization problems,
such as constrained optimization, multiobjective optimiza-
tion and CEC benchmark problems. The fourth area is the
application of hybrid NIAs to real-world optimization prob-
lems. The objective of this paper is to address the first, second
and third areas; that is, we emphasize the mechanism of
hybridization to improve the optimization performance of
NIAs. It is described that BBO and FWA techniques have dif-
ferent strategy to search the optimum solution. Researchers
are improving the effectiveness of BBO algorithm. There are
various developments done inBBOalgorithm.Hybridization
of algorithms to improve the quality of solution is new insight
of research. In the literature, BBO is hybridized with PSO,
DE and ABC etc. There is still scope to develop BBO algo-
rithm by hybridizing with other optimization algorithms. In
this study, BBO strategy is influenced by the fireworks explo-
sion strategy (given in Sect. 4).

Rest of the paper is organized as follows: Sect. 2 describes
the basic BBO. The brief introduction of fireworks algo-
rithm is given in Sect. 3. Section 4 describes the proposed
fireworks-inspired biogeography-based optimization algo-
rithm. Numerical experiments and discussion are given in
Sect. 5. Section 6 concludes the paper.

2 Biogeography-based optimization

Biogeography is the study of geographical distribution of
biological organism over space and time. Robert Mac Arther
and Edward Wilson have modeled the mathematical model
of biogeography. This model is based on three compo-
nents such as migration of species, the extinction of existing
species and the arrival of new species (MacArthur and
Wilson 1967). However, very recently a new evolutionary
population-based optimization technique has been proposed
which is based on the basic nature of biogeography. It
has been named biogeography-based optimization (BBO)
(Simon 2008). BBO technique is the inspiration frommigra-
tion of species within islands (MacArthur andWilson 1967).
BBO procedure has been used to design a population-based
optimizationprocedure that canbepotentially applied to opti-
mize many engineering optimization problems.

In biogeography model, the fitness of a geographical area
is assessed by habitat suitability index (called HSI ). Habitats
which are more favorable and suitable for species to reside
are said to have high HSI . Similarly, habitats which are less
suitable for species to reside are said to have low HSI . In
this way, high HSI habitats house a relatively larger num-
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Table 1 Different hybridization with BBO and its applications

Researchers Hybrid algorithms Applications Years

Zhang et al. (2018) BBO+ Intuitionistic fuzzy
entropy weight method

QoS-aware manufacturing
service supply chain
optimization

2018

Yogesh et al. (2017) BBO+PSO Optimization for emotion
and stress recognition
from speech signal

2017

Lim et al. (2016) BBO+Tabu search Quadratic assignment
problem

2016

Guo et al. (2014) BBO+PSO Engineering optimization 2014

Savsani et al. (2014) BBO+AIA, ACO Constrained problems 2014

Zheng et al. (2014) BBO+DE Railway wagon scheduling 2014

Wang et al. (2013a) BBO+HS Global numerical
optimization

2013

Venkata Rao and Savsani (2012) BBO+ABC Mechanical design problem 2012

Boussaid et al. (2011) BBO+DE Optimal power allocation in
wireless sensor networks

2011

Wang and Ye (2011) BBO+DE+Simplex
search

Parameter estimation of
chaotic systems

2011

Boussaïd et al. (2011) BBO+DE Standard set of benchmark
problems

2011

Bhattacharya and Chattopadhyay (2011) BBO+DE Economic load dispatch
problem

2011

Gong et al. (2010a) BBO+DE Unconstrained problems 2010

Kundra and Sood (2010) BBO+PSO Cross-country path
planning

2010

Du et al. (2009) BBO+ES, Immigration Well-known benchmark
problems

2009

ber of species. The characterization of habitability are called
suitability index variables. Rainfall, vegetation, temperature,
etc., are called suitability index variables (SI V s). These vari-
ables decide or characterize the fitness or HSI of a solution.
In BBO model, two parameters, immigration rate (λ) and
emigration rate (μ) governs the migration of species from
one habitat to another habitat. Here both λ and μ depend
on the number of species in a habitat. The relation between
migration rate (immigration rate λ and emigration rate μ)
and the number of species is illustrated in Fig. 1. If there are
zero species on the island, then immigration rate ismaximum,
denoted by I . If there aremaximumnumber of species (Smax )
on the island, then emigration rate is maximum, denoted
by E . At the state of equilibrium, the number of species is
denoted by S0 and in equilibrium state, immigration rate and
emigration rate are equal. The islands are referred to as high
HSI islands if the number of species is above than S0 and
the islands are referred to as low HSI island if the number
of species is less than S0. Further, mathematical model of
species counts in biogeography is as follows.

Let us assume that Ps(t) is the probability given for s
species in the habitat at any time t .

Fig. 1 Relation between number of species and migration rate. Repro-
duced with permission fromSimon (2008)

Ps(t + Δt) = Ps(t)(1 − λsΔt − μsΔt)

+Ps−1λs−1Δt + Ps+1μs+1Δt (1)
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where λs is immigration rate when there are s species in the
habitat. μs is emigration rate when there are s species in the
habitat.

At time t +Δt , one of the following conditions must hold
for s species in the habitat.

1. If there are s species in the habitat at time t , then therewill
be no immigration and no emigration of species within
time t and t + Δt .

2. If there are (s − 1) species in the habitat at time t then
one species will immigrate between time t and t + Δt .

3. If there are (s + 1) species in the habitat at time t , then
one species will emigrate between time t and t + Δt .

For ignoring the probability of more than one immigration
or emigration, Δt is assumed to be very small. Taking limit
as Δt −→ 0

Ṗs =

⎧
⎪⎪⎨

⎪⎪⎩

−(λs + μs)Ps + μs+1Ps+1, s = 0

−(λs + μs)Ps + λs−1Ps−1 + μs+1Ps+1, 1 ≤ s ≤ smax − 1

−(λs + μs)Ps + λs−1Ps−1, s = smax

(2)

Let us define λn is maximum immigration and μn is maxi-
mum emigration rate. Maximum possible number of species
in the habitat is Smax . Therefore, we can obtain a matrix rela-
tion exhibiting the dynamic equations of the probabilities of
the number of species in the habitat as:
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(3)

In BBO procedure, two simple biogeography concepts
migration and mutation are present.

In the designed BBO algorithm, each habitat H has a
potential m × 1 vector solution where m is the number of

SI V s in each habitat. HSI of each habitat corresponds to
fitness function of population-based algorithms. Habitat with
the highest HSI reveals the best candidate for the optimum
solution among all habitats. It is assumed that the ecosystem
constitutes Np habitats, i.e., the population size is Np. In the
basic BBO algorithm, the immigration and emigration rates
are calculated using the following formulae:

λi = I

(

1 − ki
n

)

(4)

μi = E

(
ki
n

)

(5)

hereλi is immigration rate andμi is the emigration rate of the
i th candidate (habitat), n is the maximum possible number
of species in a habitat. The fitness rank of i th habitat is ki
(after sorting the habitat based on fitness value). Therefore,
rank 1 and n for worst and the best solution, respectively.

The best solution remains in the competition using elitism
operator in population-based optimization algorithms. The
usage of elitism operator in BBO is to prevent the best
solution from corruption. In elitism approach, we save the
features of the best habitat. Elitism can be implemented by
setting λ = 0 for p best habitats. Here p is elitism parameter
selected by the user.
The pseudocode of BBO is as follows in Algorithm 1:

Algorithm 1 Biogeography-based optimization algorithm
Initialize the population.
Sort the population in descending order of fitnesses.
Calculate λi and μe ∀ i , e ∈ 1, 2, 3, ...., Np .
for Generation index = 1 to Maximum generation do

\\ Apply the migration operator
for i = 1 to Np do

Select habitat Hi according to λi .
if rand(0, 1) < λi then

for e = 1 to Np do
Select habitat He according to μe.
Replace the selected SI V of Hi by randomly selected
SI V of He.

end for
end if

end for
\\ Apply the mutation operator
for i = 1 to Np do

Compute mutation probability m(S).
if rand(0, 1) < m(S) then

Replace Hi (SI V ) with randomly generated SI V .
end if

end for
Sort the population in descending order of fitnesses.
\\ Apply elitism
Save some (elitism size) best solution of previous generation in
current solution.
Stop, if termination criterion is satisfied.

end for
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Fig. 2 Fireworks explosion.
[Credit: Google Images]

Migration and mutation are two crucial operators in BBO.
Migration and the mutation procedures make possible to
evolve new candidate solutions. This procedure of govern-
ing the habitats to the migration procedure, followed by the
mutation procedure, is continued to next generation until the
termination criteria are satisfied. These criteria can be the
maximum number of generations or obtaining the desired
solution. Migration operator of BBO is responsible for shar-
ing the informationwithin habitats using theirmigration rates
(λ and μ). The migration operator is same as the crossover
operator of the evolutionary algorithm and is responsible for
sharing the features among candidate solutions for modify-
ing fitness. In themigration procedure, immigrating habitat is
selected according to the probability of immigration rate and
emigrating habitat is selected according to the probability of
emigration rate of habitats. The individual solution vector is
depicted through SI V s in BBO. Then it is probabilistically
decided that to which of the SI V of immigrating habitat
needs to be modified. Once the SI V is selected, algorithm
replaces that SI V by emigrating habitat’s SI V .

The other crucial operator is mutation operator. Muta-
tion operator in BBO is modeled as SI V mutation. In many
meta-heuristics, mutation rate is predefined by users and in
entire optimization process the value is fixed. This operator
is responsible to maintain diversity of population in BBO
procedure.

The probability of each species count can be produced
via migration model shown in Fig. 1. By observing the equi-
librium point of species curve, we can conclude that both
low and high species count have relatively low probabilities.
Both very high and very low HSI solution are improbable at
the same rate. Medium HSI solution is relatively probable.
Therefore, mutation process gives same chance to improve
low HSI solutions as to high HSI solutions. The mutation
rate mut(i) is calculated as:

mut(i) = mmax

(

1 − Pi
Pmax

)

(6)

where mmax is the user defined parameter and Pmax =
max{Pi }; i = 1, 2, . . . , Np.

3 Fireworks algorithm

FireworksAlgorithm (FWA) is inspired by the explosion pro-
cess of fireworks (given in Fig. 2). FWAwas proposed by Tan
and Zhu (2010). The algorithm starts with random locations
of individuals in the search space. Each location explodes
a firework to produce a set of sparks. In the next iteration,
only high-quality fireworks are selected among firework and
sparks. Quality of fireworks improved until the termination
criterion is met.

If the given optimization problem is Min f (X), where
X = (x1, . . . , xD) and x j

min ≤ x j
i ≤ x j

max , ∀ j = 1, . . . , D
and ∀ i = 1, . . . , Np. The number of sparks corresponding
to each firework Xi is defined as follows:

si = m.
fworst − f (Xi ) + ε

∑Np
i=1( fworst − f (Xi )) + ε

(7)

where parameter m controls the total number of sparks gen-
erated by the Np fireworks, fworst is the worst (maximum)
value of objective function among Np fireworks and ε is the
smallest constant to avoid zero-division error.

To remove overwhelming effects of splendid fireworks,
the bounds of sparks are defined as follows:

ŝi =

⎧
⎪⎨

⎪⎩

round(a.m) i f si < am

round(b.m) i f si > bm

round(si ) otherwise

(8)
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where a and b are constant parameters, ŝi is the bound of
sparks and round() is the rounding function.

The fireworks with better quality have a lower explosion
amplitude and vice versa. For each firework Xi , the explosion
amplitude Ai is defined as follows:

Ai = Â.
f (Xi ) − fbest + ε

∑Np
i=1( f (Xi ) − fbest ) + ε

(9)

where Â is constant and is calculated as the sum of all ampli-
tudes and fbest is the best (minimum) value of objective
function among Np fireworks.

Firstly, initialize the location of sparks around each fire-
work as:

X̃ j = Xi , ∀ j ∈ 1, 2, . . . , si , f or each f irework i ∈ 1, 2, . . . , Np

Then the location of sparks are updated using an update
equation. The update equation is based on displacement fac-
tor h = Ai .rand(-1,1) in the firework location Xi , 1 ≤ i ≤ Np.
The location of each spark X̃ j , 1 ≤ j ≤ si is calculated as
follows:

X̃d
j = X̃d

j + h, (10)

where d is randomly selected dimension.
If the location of sparks fall out of the search space, then it
is mapped into the search space as below:

X̃d
j = Xd

min + round(X̃d
j )mod( ˜Xd

max − ˜Xd
min) (11)

where X̃d
j is the position of an spark which lies outside of the

search space and ˜Xd
min and

˜Xd
max are the boundaries of spark

X̃ in the direction d. Also “mod” is the modulo operator.
Then the Gaussian mutation is applied over sparks to pre-

serves the diversity of sparks. Then the location of specific
spark X̂ j , 1 ≤ j ≤ si is calculated as follows:

X̂d
j = X̂d

j .g (12)

where g is Gaussian coefficient (Gaussian(1, 1)).
Gaussian(1, 1) is normally distributed randomnumberwith
meanμ = 1 and variance σ = 1 and d is a randomly selected
dimension.

If the location of specific sparks fall out of the search
space, then it is mapped into the search space as below:

X̂d
j = Xd

min + round(X̂d
j )mod

( ˆXd
max − ˆXd

min

)
(13)

where X̂d
j is the position of an specific spark which lies

outside of the search space and ˆXd
min and

ˆXd
max are the bound-

aries of specific spark X̂ in the direction d. Also “mod” is
the modulo operator.

In each iteration, the best location among all current sparks
are always selected for next iteration. In selection mech-
anism, the measurement of Euclidean distance is applied,
where d(Xi , X j ) represents the Euclidean distance between
any two individuals Xi and X j .

R(Xi ) =
∑

j∈K
d(Xi , X j ) =

∑

j∈K
‖Xi − X j‖ (14)

where R(Xi ) represents the sum of distances between indi-
vidual Xi and all the other individuals. K denotes the set of
all current locations of sparks after explosion operator and
Gaussian mutation operator. The selection probability of the
location Xi for next generation is calculated from the roulette
wheel selection mechanism:

p(Xi ) = R(Xi )
∑

j∈K R(X j )
(15)

Working of Fireworks Algorithm is given in Algorithm 2.

Algorithm 2 Fireworks algorithm
Initialize the location of fireworks.
for Generation index = 1 to Maximum generation do

Calculate si using equations (7) and (8), ∀ i ∈ 1, 2, 3, ...., Np .
Calculate Ai using Equation (9), ∀ i ∈ 1, 2, 3, ...., Np .
z = round(D.rand(0, 1)) \\ randomly choose z dimension.
Calculate displacement factor, h=Ai .rand(−1, 1)
for j = 1 to si do

for d =1 to D do
if d ∈ z then

X̃d
j = X̃d

j + h
end if

end for
end for
\\ Find the location of specific sparks
z = round(D.rand(0, 1)) \\ randomly choose z dimension.
Calculate Gaussian explosion coefficient, g = Gaussian(1, 1);
for j = 1 to si do

for d =1 to D do
if d ∈ z then

X̂d
j = X̂d

j .g
end if

end for
end for
Select best location among current locations of fireworks and
sparks.
Select Np − 1 location according to selection probability given in
Equation (15).
Stop, if termination criterion is satisfied.

end for
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4 Proposedmethod

4.1 Motivation

Hybrid nature-inspired algorithms (NIAs) are attractive alter-
natives to standard NIAs. The combination of several algo-
rithms in hybrid NIAs allows it to exploit the strength of each
algorithm. It has been shown that by properly selecting the
constituent algorithms and hybridization strategies, hybrid
NIAs can outperform their constituent algorithms due to
their synergy. This characteristic is strong motivation for the
study of hybrid NIAs. Researchers are continuously develop-
ing more promising and refined nature-inspired algorithms
by acquiring the different search techniques in one specific
optimization framework. In this paper, BBO and FWA are
considered for hybridization as BBO (Bansal and Farswan
2017; Bansal et al. 2018) has proven a good optimizer and
FWA is attracted by their sparks generation skill. Initially,
individuals are updated by BBO strategy and followed by
the strategy which is inspired by fireworks explosion (given
in Sect. 3).

4.2 Fireworks-inspired biogeography-based
optimization algorithm

Each meta-heuristic algorithm has its own exploration and
exploitation capability to search the promising solution in
the search space. The hybridization of BBO and FWA is
based on different exploration and exploitation capability of
algorithms. BBO has migration operator to share the existing
features andmutation operator to keep the diversity. FWAhas
explosion phenomena to improve the solution. In FWA, each
firework generate the set of sparks and some specific sparks
is generated by Gaussian distribution to keep diversity. In
the proposed method both BBO and FWA algorithms are
hybridized together to produce better optimal solution. The
working of proposed hybrid approach is as follows:

Since we have three population: before applying BBO
operators, after applying BBO operators, and after applying
strategy inspired by fireworks explosion. Let us call these
population as parents, leaders and followers, respectively.
Initially population is generated within the search space
called parents. Then BBO operators are applied within the
parent individuals. BBO operators are responsible to pro-
duce leaders. Each leader generates some individuals named
as followers. The generation of followers through each leader
is inspired by fireworks explosions described in Sect. 3. In
the proposed algorithm, leaders corresponds to the fireworks
and followers generated by each leader corresponds to sparks
generated by relatedfirework. The range of followers is deter-
mined by Eq. (9), and the number of followers corresponding
to each leader is calculated by Eqs. (7) and (8). The location
of all followers corresponding to each leader are determined

by Eqs. (10), (12) and (11). Leaders are strongly connected
to those followers which are settled in closed vicinity of lead-
ers. The good leader denotes that the promising area of leader
may be closed to the optimal location. Thus it is proper to
utilize the more followers to search the local area around
the leader. In another way, a bad leader means the optimal
location may be apart from the location of leader. Then, the
search range should be larger. In FBBO, more followers are
generated and the location range of the followers is smaller
for good leader, compared to bad one.

From the leaders and followers, n − 1 individuals are
selected based on the selection probability given in Eq. (15)
as well as 1 best individual is selected to proceed in the next
step. Then elitism is applied in population. Elitism operator
saves the two best individual in each generation. The pseu-
docode of proposed algorithm is as follows:

Algorithm 3 Hybrid BBO and FWA algorithm
Initialize Np locations (individuals).
for Generation index = 1 to Maximum generation do

Apply BBO search mechanism
Apply FWA search mechanism
Apply elitism
Stop, if termination criterion is satisfied.

end for

4.3 Evaluating FBBO for bias(es)

It is better to obtain an idea of optimizer’s intrinsic bias(es)
before evaluating the performance of an optimizer using
numerical experiments on benchmark set. The nature of opti-
mizers may have central bias (increased possibility to search
solutions near to the center of the search space) and/or an
edge bias (increased possibility to search solutions near to
the edges of the search space) and/or axial bias (increased
possibility to search solutions along a coordinate axis and
variation of this bias also increased possibility to search solu-
tion along a diagonal of the search space) and/or exploitation
bias (increased possibility to search solutions around a posi-
tion with no special characteristics). Therefore, to test FBBO
and other considered algorithms for bias(es), signature anal-
ysis (Clerc 2015) has been carried out. Let us consider the
minimization problem:

Min f (x1, x2) = 5; x1, x2 ∈ [−5, 5]

Clearly, every point in the search space is an optimal solu-
tion of the problem. Therefore, an unbiased optimizer should
provide the solution same as random search. Signatures for
BBO,M1BBO,M2BBO,DBBO, LBBO, BBBO, and FBBO
are plotted in Fig. 3a–g, respectively. In these signatures,
solutions obtained by an algorithm in 100 runs having 1000
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Fig. 3 Analysis based on signatures. a Signature of BBO algorithm, b signature ofM1BBO algorithm, c signature ofM2BBO algorithm, d signature
of DBBO algorithm, e signature of LBBO algorithm, f signature of BBBO algorithm and g signature of FBBO algorithm
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iterations in each run are plotted. Detailed parameter set-
tings of these algorithms are given in Sect. 5.1. From the
signatures, it is clear that LBBO and BBBO are central bias
algorithms. That is, LBBO and BBBO are a better algorithm
for those problems whose optima lies in the close vicinity of
the center of the search space. The original BBO, M1BBO,
M2BBO, DBBO, LBBO, and proposed FBBO are almost
unbiased algorithms. That is the location of the optima will
have the least impact on the performance of BBO, M1BBO,
M2BBO, DBBO, LBBO, and FBBO.

5 Experimental results and discussion

To see the effect of fireworks-inspired biogeography-based
optimization (FBBO) on CEC 2014 (Liang et al. 2013)
benchmark set is selected for experiments. This set of prob-
lems consists unimodal, multimodal, hybrid and composite
functions.

5.1 Experimental setting

The proposed FBBO is tested for 10 and 30-dimensional
search space. 51 independent runs are conducted for each
function. The search space range is [-100,100]. Initial pop-
ulation is uniformly generated within the specified search
range using random number generator based on clock
time. The population size is set 5 for the proposed FBBO
algorithm otherwise population size is considered 50. The
termination criteria is either maximum function evaluation
(104×Dimension) or error value with desired level of accu-
racy (10−8), whichever is attained earlier. Other parameter
settings for the algorithmsBBO,GSA, andDBBOare similar
to their original research papers.

5.2 Analysis of results

In this paper, results are reported in the format as required
by CEC 2014. Table 2 shows the results obtained by per-
forming GSA, BBO, M1BBO, M2BBO, DBBO, LBBO,
BBBO and FBBO on the basis of these benchmark function
for 10-dimensional search space. Table 3 gives the results
obtained after performing the same experiments on functions
of 30-dimensional search space. The performance of FBBO
is compared with GSA, BBO, M1BBO, M2BBO, DBBO,
LBBO, and BBBO. The recorded results are the minimum,
maximum,mean, median, and standard deviation of the error
value of different 51 runs. The error is the absolute value
of difference between obtained objective function value and
the known function value. The tabulated data of the results
is presented as instructed in the directions in the problem
set. In Table 2, FBBO is compared with other algorithm and
variants of BBO. The performance of FBBO is analyzed

based on the reported results. The better results obtained
by considered algorithms are highlighted by bold font. In
case of average error value FBBO performs better except
9 functions ( f8, f9, f12, f14, f17, f20, f24, f29, f30). For the
function f22, M1BBO and FBBO have same average error
value which are minimum corresponding to other considered
algorithms. In the function f26, all considered algorithms
have minimum and equal average error value except GSA.
Out of the 30 functions FBBO is better on 10, 15, and 12
functions based on standard deviation, median and worst
error value, respectively. FBBO gives better minimum value
in all function except f8, f9, f10, f12, f20, f22, f24, f25 and
f27. In all aspects given in Table 2, FBBO is performing
better than considered algorithms. Same analysis is car-
ried out for 30-dimensional CEC 2014 functions. In the
Table 3, better average error achieved by FBBO in 22
functions out of total 30 CEC 2014 functions. FBBO per-
forms better on 30-dimensional space except 8 functions
( f7, f8, f9, f12, f14, f18, f19, f21). Based on standard devi-
ation, median and worst error value FBBO is performing
better on 14, 16, and 15 functions, respectively. The better
minimum value achieved by FBBO in 15 functions as com-
pared to other considered algorithms. For the function f5 all
considered algorithms have sameminimum values. From the
above discussion, we can conclude that FBBO is better than
considered algorithms for achieving the set target given by
CEC 2014. Thus, in order to attain a better objective value,
FBBO is preferred over considered algorithms.

Comparison of the proposed FBBO with state-of-the-art
algorithms such as FOA (Li et al. 2014), ABC (Li et al. 2016),
TLBO (Duan et al. 2018) and invasive weed optimization
(Zheng and Li 2018) may be a matter of future research.

Some more intensive statistical analyses have been car-
ried out with the numerical results of GSA, BBO, M1BBO,
M2BBO, DBBO, LBBO, BBBO and FBBO. The boxplots
are the empirical distribution of data. In 10-dimensional
search space, boxplots for mean error, standard deviation,
median, best and worst corresponding to all algorithms
GSA, BBO, M1BBO, M2BBO, DBBO, LBBO, BBBO, and
FBBO are given in Fig. 4. The boxplot for the same in 30-
dimensional search space is given in Fig. 5. From the boxplot
analyses, FBBO performs better than other considered algo-
rithms for 10- and 30-dimensional problems.

5.3 Statistical analysis

In this section, Mann–Whitney U rank-sum test used to ana-
lyze the significance difference between FBBO and other
considered algorithms. The results of Mann–Whitney U
rank-sum test forminimumerror of 100 simulations are given
in Tables 4 and 5 for 10-dimensional and 30-dimensional,
respectively. In Tables 4 and 5, ‘+’ sign appears if FBBO is
the better algorithm, ‘-’ sign appears if FBBO is the worse
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Table 2 Average, standard
deviation, median, best, worst
error value obtained by FBBO
and other variant of BBO for
10-dimensional CEC 2014
benchmark problems

TP Algorithms Mean error SD Med Best Worst

f1 GSA 2.70E+06 9.20E+05 2.63E+06 1.45E+06 4.07E+06

BBO 5.12E+06 6.35E+06 2.66E+06 6.95E+04 3.11E+07

M1BBO 3.63E+05 3.59E+05 2.75E+05 8.08E+03 1.73E+06

M2BBO 3.21E+05 6.94E+06 4.79E+06 3.84E+03 2.64E+07

DBBO 2.70E+05 5.54E+05 1.84E+05 2.11E+03 3.08E+06

LBBO 2.57E+06 2.25E+06 2.27E+06 1.69E+04 8.72E+06

BBBO 3.93E+06 2.61E+06 3.82E+06 3.95E+04 1.03E+07

FBBO 1.07E+05 4.90E+05 1.92E+05 1.01E+03 2.76E+06

f2 GSA 2.49E+02 4.02E+02 1.50E+02 7.38E−01 1.80E+03

BBO 5.74E+04 3.81E+04 5.17E+04 1.30E+04 2.18E+05

M1BBO 2.23E+03 2.82E+03 8.35E+02 2.14E+00 1.47E+04

M2BBO 4.87E+04 4.12E+04 3.28E+04 7.00E+03 2.15E+05

DBBO 9.39E+03 7.53E+03 7.29E+03 3.69E+02 3.91E+04

LBBO 1.03E+03 1.23E+03 5.07E+02 1.80E−01 5.65E+03

BBBO 1.35E+03 1.15E+03 1.13E+03 3.42E+01 5.59E+03

FBBO 1.15E+01 3.85E+03 2.15E+03 1.54E−01 1.39E+04

f3 GSA 1.90E+04 4.33E+03 1.94E+04 1.13E+04 2.75E+04

BBO 9.09E+03 7.94E+03 6.89E+03 1.27E+02 3.46E+04

M1BBO 6.50E+03 5.40E+03 4.85E+03 6.22E+01 2.34E+04

M2BBO 6.49E+03 5.98E+03 6.17E+03 2.65E+02 3.32E+04

DBBO 6.57E+03 5.40E+03 4.64E+03 1.26E+02 2.46E+04

LBBO 4.37E+03 3.75E+03 3.53E+03 4.47E+00 1.44E+04

BBBO 2.01E+03 1.70E+03 1.53E+03 3.69E+01 7.32E+03

FBBO 2.53E+02 3.47E+03 1.16E+03 2.31E+00 2.03E+04

f4 GSA 4.41E+01 1.40E+01 4.56E+01 2.12E−01 6.16E+01

BBO 1.69E+01 1.65E+01 5.26E+00 5.30E−02 3.58E+01

M1BBO 3.94E+00 1.78E+00 4.78E+00 3.01E−05 5.46E+00

M2BBO 1.45E+01 1.77E+01 1.07E+00 1.27E−02 6.68E+01

DBBO 6.35E+00 3.01E+00 6.97E+00 5.95E−03 9.61E+00

LBBO 1.54E+01 1.92E+01 6.34E−01 3.78E−04 6.63E+01

BBBO 2.42E+01 2.57E+01 5.48E+00 1.29E−02 6.82E+01

FBBO 2.75E+00 2.31E+01 3.48E+01 7.87E−06 7.77E+01

f5 GSA 2.00E+01 3.78E−04 2.00E+01 2.00E+01 2.00E+01

BBO 1.89E+01 4.38E+00 2.00E+01 3.71E−01 2.01E+01

M1BBO 2.00E+01 5.16E−03 2.00E+01 2.00E+01 2.00E+01

M2BBO 1.87E+01 4.66E+00 2.00E+01 6.60E−01 2.00E+01

DBBO 2.00E+01 8.04E−03 2.00E+01 2.00E+01 2.00E+01

LBBO 1.93E+01 3.55E+00 2.00E+01 2.98E−06 2.00E+01

BBBO 1.97E+01 2.50E+00 2.00E+01 2.01E+00 2.01E+01

FBBO 1.00E+01 1.85E−03 2.00E+01 1.98E−06 2.00E+01

f6 GSA 4.51E+00 1.71E+00 4.58E+00 1.50E+00 6.23E+00

BBO 2.24E+00 1.23E+00 2.07E+00 2.56E−01 5.70E+00

M1BBO 1.44E+00 1.16E+00 1.51E+00 2.00E−02 5.71E+00

M2BBO 2.34E+00 1.22E+00 2.25E+00 3.20E−01 4.67E+00

DBBO 1.52E+00 1.19E+00 1.71E+00 1.52E−01 5.25E+00

LBBO 2.49E+00 1.31E+00 2.26E+00 2.67E−01 5.77E+00

BBBO 2.87E+00 1.12E+00 2.92E+00 7.16E−01 5.93E+00

FBBO 1.33E+00 1.46E+00 4.01E+00 1.62E−02 7.52E+00
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Table 2 continued TP Algorithms Mean error SD Med Best Worst

f7 GSA 8.21E−04 3.57E−03 8.21E−09 2.08E−09 1.72E−02

BBO 3.10E−01 1.18E−01 3.07E−01 6.23E−02 7.19E−01

M1BBO 5.51E−02 4.95E−02 3.94E−02 2.85E−06 2.27E−01

M2BBO 4.95E−02 1.01E−01 2.92E−01 2.11E−06 6.63E−01

DBBO 9.12E−02 5.91E−02 7.80E−02 1.33E−02 2.72E−01

LBBO 1.74E−01 1.02E−01 1.38E−01 2.95E−02 4.45E−01

BBBO 3.21E−01 1.34E−01 2.99E−01 1.14E−01 6.72E−01

FBBO 3.85E−04 2.30E−01 3.24E−01 2.00E−09 1.03E+00

f8 GSA 3.53E+01 5.47E+00 3.48E+01 2.59E+01 4.97E+01

BBO 1.79E−02 1.26E−02 1.51E−02 1.23E−03 6.42E−02

M1BBO 4.20E−07 2.36E−07 3.93E−07 8.97E−08 1.12E−06

M2BBO 1.94E−02 1.49E−02 1.48E−02 3.64E−03 7.19E−02

DBBO 1.55E−02 2.37E−02 8.34E−03 1.79E−05 1.56E−01

LBBO 1.10E−11 1.67E−11 3.98E−12 2.27E−13 7.01E−11

BBBO 1.03E−03 1.88E−03 3.18E−04 1.58E−05 1.07E−02

FBBO 9.10E−08 2.78E−07 2.49E−07 5.43E−09 1.81E−04

f9 GSA 3.14E+01 5.58E+00 3.08E+01 1.79E+01 4.38E+01

BBO 8.03E+00 2.83E+00 7.98E+00 2.01E+00 1.49E+01

M1BBO 9.40E+00 3.66E+00 8.95E+00 2.98E+00 2.29E+01

M2BBO 9.46E+00 3.44E+00 9.96E+00 3.99E+00 1.60E+01

DBBO 1.02E+01 5.75E+00 9.95E+00 3.00E+00 2.99E+01

LBBO 8.72E+00 3.48E+00 8.95E+00 2.98E+00 1.79E+01

BBBO 1.20E+01 4.14E+00 1.19E+01 3.98E+00 2.02E+01

FBBO 1.81E+01 6.52E+00 1.79E+01 4.98E+00 3.18E+01

f10 GSA 8.91E+02 2.58E+02 8.94E+02 4.61E+02 1.47E+03

BBO 2.66E−01 1.26E−01 2.29E−01 5.00E−02 6.00E−01

M1BBO 1.87E−01 8.13E−02 1.88E−01 8.66E−03 3.75E−01

M2BBO 1.67E−01 1.01E−01 2.48E−01 7.26E−02 6.47E−01

DBBO 3.10E−01 2.93E−01 2.40E−01 6.43E−02 2.00E+00

LBBO 6.86E−02 5.57E−02 6.25E−02 1.00E−08 2.50E−01

BBBO 5.20E−01 6.13E−01 3.40E−01 1.19E−01 3.67E+00

FBBO 5.00E−03 1.85E+00 5.90E−02 7.27E−04 1.15E−01

f11 GSA 1.00E+03 2.36E+02 1.00E+03 4.69E+02 1.65E+03

BBO 3.24E+02 1.85E+02 3.16E+02 1.12E+01 6.67E+02

M1BBO 3.26E+02 2.02E+02 2.59E+02 1.18E+01 7.90E+02

M2BBO 3.18E+02 1.56E+02 2.78E+02 1.07E+01 7.24E+02

DBBO 4.91E+02 2.42E+02 4.61E+02 3.22E+01 9.94E+02

LBBO 4.17E+02 2.25E+02 3.91E+02 1.86E+01 1.04E+03

BBBO 2.71E+02 1.55E+02 2.52E+02 6.99E+00 8.04E+02

FBBO 2.18E+01 1.04E+02 1.82E+02 1.56E+00 1.36E+02

f12 GSA 5.93E−04 2.99E−03 9.00E−09 6.36E−09 1.51E−02

BBO 1.40E−01 5.34E−02 1.29E−01 5.58E−02 3.13E−01

M1BBO 6.35E−02 5.96E−02 4.67E−02 3.39E−03 3.26E−01

M2BBO 1.32E−01 6.04E−02 1.23E−01 4.28E−02 3.45E−01

DBBO 1.25E−01 6.20E−02 1.17E−01 1.38E−02 2.84E−01

123



7102 P. Farswan, J. C. Bansal

Table 2 continued TP Algorithms Mean error SD Med Best Worst

LBBO 9.69E−02 5.93E−02 8.99E−02 1.75E−02 2.97E−01

BBBO 1.31E−01 8.16E−02 1.07E−01 2.83E−02 4.10E−01

FBBO 3.72E−02 4.24E−03 1.20E−01 4.35E−03 4.71E−01

f13 GSA 2.20E−02 1.29E−02 2.23E−02 7.91E−03 4.03E−02

BBO 2.21E−01 5.91E−02 2.12E−01 1.11E−01 3.99E−01

M1BBO 9.07E−02 3.70E−02 8.39E−02 2.05E−02 2.00E−01

M2BBO 2.12E−01 7.39E−02 1.96E−01 1.05E−01 4.14E−01

DBBO 1.21E−01 4.85E−02 1.17E−01 4.76E−02 3.20E−01

LBBO 1.83E−01 8.24E−02 1.70E−01 7.18E−02 4.82E−01

BBBO 2.84E−01 9.80E−02 2.88E−01 1.18E−01 5.44E−01

FBBO 2.01E−02 1.24E−03 2.20E−02 2.56E−03 4.02E−02

f14 GSA 5.00E−01 4.18E−05 5.00E−01 5.00E−01 5.00E−01

BBO 2.09E−01 1.82E−01 1.35E−01 4.60E−02 9.10E−01

M1BBO 2.22E−01 9.64E−02 2.32E−01 5.85E−02 4.02E−01

M2BBO 2.21E−01 1.94E−01 1.62E−01 5.16E−02 8.48E−01

DBBO 1.72E−01 8.17E−02 1.55E−01 5.26E−02 4.00E−01

LBBO 2.65E−01 8.05E−02 2.66E−01 8.25E−02 4.37E−01

BBBO 1.99E−01 6.24E−02 1.85E−01 1.12E−01 4.82E−01

FBBO 1.80E−01 1.51E−01 1.09E−01 3.96E−02 7.24E−01

f15 GSA 1.20E+00 7.25E−01 1.09E+00 5.49E−01 2.27E+00

BBO 1.49E+00 5.58E−01 1.45E+00 6.63E−01 3.16E+00

M1BBO 8.30E−01 2.51E−01 7.80E−01 3.25E−01 1.23E+00

M2BBO 1.48E+00 5.93E−01 1.40E+00 5.57E−01 3.64E+00

DBBO 9.31E−01 3.10E−01 8.89E−01 4.39E−01 1.78E+00

LBBO 1.06E+00 5.78E−01 8.82E−01 4.50E−01 4.19E+00

BBBO 1.11E+00 3.72E−01 1.06E+00 4.20E−01 1.96E+00

FBBO 5.15E−01 2.47E−01 3.55E−01 2.99E−01 1.16E+00

f16 GSA 4.27E+00 3.50E−01 4.29E+00 3.63E+00 4.84E+00

BBO 2.34E+00 4.42E−01 2.51E+00 1.18E+00 3.13E+00

M1BBO 2.17E+00 4.99E−01 2.23E+00 9.96E−01 3.06E+00

M2BBO 2.25E+00 4.53E−01 2.29E+00 1.32E+00 3.17E+00

DBBO 2.13E+00 4.26E−01 2.59E+00 1.10E+00 3.10E+00

LBBO 2.13E+00 4.71E−01 2.09E+00 9.80E−01 3.05E+00

BBBO 2.55E+00 2.56E−01 2.57E+00 1.96E+00 3.03E+00

FBBO 2.06E+00 1.03E−01 2.08E+00 7.10E−01 3.03E+00

f17 GSA 4.53E+05 1.89E+05 4.28E+05 1.79E+05 1.39E+06

BBO 8.75E+05 8.71E+05 6.08E+05 2.19E+04 4.58E+06

M1BBO 2.92E+05 4.13E+05 1.51E+05 8.50E+02 2.06E+06

M2BBO 5.96E+05 5.29E+05 4.78E+05 2.60E+04 2.05E+06

DBBO 8.26E+03 8.47E+03 5.10E+03 1.39E+02 4.37E+04

LBBO 3.34E+05 3.20E+05 2.03E+05 3.60E+03 1.13E+06

BBBO 2.74E+05 1.54E+05 2.54E+05 4.42E+04 7.20E+05

FBBO 1.02E+04 2.53E+04 3.20E+03 1.37E+02 1.64E+05

f18 GSA 7.73E+03 2.31E+03 7.76E+03 4.25E+03 1.18E+04

BBO 1.32E+04 1.22E+04 8.97E+03 3.32E+01 4.17E+04

M1BBO 1.10E+04 9.92E+03 8.52E+03 1.16E+02 3.55E+04
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Table 2 continued TP Algorithms Mean error SD Med Best Worst

M2BBO 1.24E+04 1.10E+04 8.76E+03 1.53E+02 5.28E+04

DBBO 1.01E+04 1.01E+04 5.87E+03 6.92E+00 3.38E+04

LBBO 9.93E+03 7.22E+03 9.02E+03 1.67E+02 3.00E+04

BBBO 8.21E+03 3.44E+03 8.18E+03 7.41E+02 1.82E+04

FBBO 5.55E+03 1.58E+03 4.02E+03 4.14E+00 1.05E+04

f19 GSA 3.84E+00 9.12E−01 3.35E+00 2.50E+00 5.19E+00

BBO 9.60E−01 7.23E−01 7.46E−01 1.31E−01 4.09E+00

M1BBO 6.78E−01 6.89E−01 4.75E−01 3.80E−02 4.24E+00

M2BBO 7.91E−01 4.10E−01 7.18E−01 2.62E−01 2.16E+00

DBBO 1.30E+00 7.06E−01 1.19E+00 1.75E−01 4.23E+00

LBBO 7.31E−01 4.25E−01 7.34E−01 7.69E−02 1.97E+00

BBBO 5.88E−01 4.07E−01 4.46E−01 2.10E−01 2.10E+00

FBBO 3.40E−01 2.85E−01 3.52E−01 3.55E−02 1.68E+00

f20 GSA 1.67E+04 1.72E+04 1.09E+04 3.35E+03 8.26E+04

BBO 9.77E+03 9.44E+03 6.21E+03 2.07E+01 3.32E+04

M1BBO 6.28E+03 7.44E+03 2.79E+03 4.69E+00 2.77E+04

M2BBO 1.01E+04 9.62E+03 6.64E+03 5.72E+01 3.22E+04

DBBO 7.91E+03 8.96E+03 4.43E+03 1.56E+00 3.09E+04

LBBO 5.77E+03 5.99E+03 3.47E+03 4.58E+00 2.76E+04

BBBO 5.17E+03 3.40E+03 4.12E+03 9.22E+02 1.94E+04

FBBO 6.32E+03 6.73E+03 4.11E+03 1.25E+01 2.72E+04

f21 GSA 1.79E+05 2.98E+05 1.40E+05 1.11E+04 5.82E+05

BBO 5.56E+05 7.20E+05 3.82E+05 9.04E+03 4.28E+06

M1BBO 7.23E+04 1.25E+05 2.19E+04 1.55E+02 5.39E+05

M2BBO 5.05E+05 6.76E+05 2.08E+05 2.10E+03 3.49E+06

DBBO 7.89E+03 1.07E+04 4.46E+03 5.70E+01 6.00E+04

LBBO 3.66E+05 5.94E+05 6.46E+04 1.09E+03 3.14E+06

BBBO 2.97E+05 3.60E+05 1.51E+05 8.82E+01 1.37E+06

FBBO 6.89E+03 6.35E+03 5.47E+03 1.55E+01 2.65E+04

f22 GSA 2.41E+02 1.17E+02 1.73E+02 1.45E+02 3.86E+02

BBO 2.16E+01 4.55E+01 2.10E+00 5.50E−01 1.49E+02

M1BBO 2.03E+01 4.86E+01 5.02E−01 2.02E−02 1.90E+02

M2BBO 3.37E+01 6.21E+01 2.60E+00 3.59E−01 2.22E+02

DBBO 2.92E+01 4.80E+01 3.66E+00 1.03E−01 1.47E+02

LBBO 6.09E+01 7.00E+01 2.48E+00 6.46E−02 1.90E+02

BBBO 6.01E+01 6.35E+01 1.08E+00 3.62E−01 1.44E+02

FBBO 2.03E+01 5.50E+01 4.60E−01 2.12E−02 1.63E+02

f23 GSA 2.71E+02 9.59E+01 3.29E+02 2.00E+02 3.29E+02

BBO 3.29E+02 2.06E−02 3.29E+02 3.29E+02 3.30E+02

M1BBO 3.29E+02 1.63E−07 3.29E+02 3.29E+02 3.29E+02

M2BBO 3.29E+02 2.18E−02 3.29E+02 3.29E+02 3.30E+02

DBBO 3.29E+02 2.05E−02 3.29E+02 3.29E+02 3.30E+02

LBBO 3.29E+02 6.29E−07 3.29E+02 3.29E+02 3.29E+02

BBBO 3.29E+02 2.32E−04 3.29E+02 3.29E+02 3.29E+02
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Table 2 continued TP Algorithms Mean error SD Med Best Worst

FBBO 2.00E+02 0.00E+00 2.00E+02 2.00E+02 2.00E+02

f24 GSA 2.02E+02 1.97E+00 2.02E+02 1.91E+02 2.03E+02

BBO 1.23E+02 6.82E+00 1.21E+02 1.12E+02 1.38E+02

M1BBO 1.23E+02 7.41E+00 1.22E+02 1.10E+02 1.49E+02

M2BBO 1.21E+02 6.92E+00 1.20E+02 1.08E+02 1.47E+02

DBBO 1.24E+02 8.06E+00 1.22E+02 1.10E+02 1.49E+02

LBBO 1.26E+02 1.09E+01 1.25E+02 1.10E+02 1.59E+02

BBBO 1.27E+02 7.88E+00 1.27E+02 1.12E+02 1.45E+02

FBBO 1.22E+02 3.29E+01 1.40E+02 1.12E+02 2.00E+02

f25 GSA 1.99E+02 9.56E−01 2.00E+02 1.96E+02 2.00E+02

BBO 1.79E+02 3.12E+01 2.01E+02 1.19E+02 2.04E+02

M1BBO 1.91E+02 2.21E+01 2.01E+02 1.24E+02 2.04E+02

M2BBO 1.75E+02 3.16E+01 1.99E+02 1.15E+02 2.04E+02

DBBO 1.92E+02 2.39E+01 2.01E+02 1.07E+02 2.03E+02

LBBO 1.89E+02 1.80E+01 2.00E+02 1.35E+02 2.02E+02

BBBO 1.82E+02 2.33E+01 1.94E+02 1.32E+02 2.01E+02

FBBO 1.55E+02 1.47E+01 1.54E+02 1.13E+02 2.00E+02

f26 GSA 1.97E+02 1.51E+01 2.00E+02 1.00E+02 2.00E+02

BBO 1.00E+02 7.53E−02 1.00E+02 1.00E+02 1.00E+02

M1BBO 1.00E+02 4.18E−02 1.00E+02 1.00E+02 1.00E+02

M2BBO 1.00E+02 7.32E−02 1.00E+02 1.00E+02 1.00E+02

DBBO 1.00E+02 2.82E−02 1.00E+02 1.00E+02 1.00E+02

LBBO 1.00E+02 6.76E−02 1.00E+02 1.00E+02 1.00E+02

BBBO 1.00E+02 7.01E−02 1.00E+02 1.00E+02 1.00E+02

FBBO 1.00E+02 1.94E+01 1.00E+02 1.00E+02 2.00E+02

f27 GSA 6.28E+02 5.28E+02 4.02E+02 2.63E+02 1.68E+03

BBO 3.03E+02 1.58E+02 3.82E+02 2.83E+00 4.26E+02

M1BBO 2.92E+02 1.36E+02 3.38E+02 2.01E+00 4.01E+02

M2BBO 3.21E+02 1.29E+02 3.69E+02 3.63E+00 4.07E+02

DBBO 3.10E+02 1.46E+02 3.79E+02 1.29E+00 4.49E+02

LBBO 3.10E+02 1.43E+02 3.69E+02 3.31E+00 4.06E+02

BBBO 2.95E+02 1.64E+02 3.88E+02 1.70E+00 4.17E+02

FBBO 1.73E+02 6.73E+01 2.00E+02 3.34E+00 2.00E+02

f28 GSA 1.03E+03 4.48E+02 1.03E+03 2.00E+02 1.87E+03

BBO 4.27E+02 5.64E+01 4.08E+02 3.61E+02 5.43E+02

M1BBO 3.22E+02 3.58E+01 3.07E+02 3.06E+02 4.10E+02

M2BBO 4.41E+02 5.82E+01 4.28E+02 3.57E+02 5.84E+02

DBBO 3.08E+02 1.36E+01 3.06E+02 3.06E+02 4.04E+02

LBBO 5.43E+02 8.74E+01 5.26E+02 4.01E+02 7.71E+02

BBBO 5.13E+02 1.13E+02 5.29E+02 1.03E+02 7.46E+02

FBBO 2.00E+02 0.00E+00 2.00E+02 2.00E+02 2.00E+02
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Table 2 continued TP Algorithms Mean error SD Med Best Worst

f29 GSA 1.10E+06 5.02E+06 2.00E+02 2.00E+02 2.60E+07

BBO 5.03E+02 1.83E+02 4.91E+02 2.72E+02 1.30E+03

M1BBO 2.06E+02 2.85E+00 2.06E+02 2.03E+02 2.22E+02

M2BBO 5.09E+02 2.05E+02 4.73E+02 2.39E+02 1.22E+03

DBBO 2.06E+02 3.82E+00 2.05E+02 2.02E+02 2.20E+02

LBBO 3.60E+02 1.26E+02 3.11E+02 1.95E+02 8.47E+02

BBBO 3.57E+04 2.50E+05 3.01E+02 1.83E+02 1.80E+06

FBBO 4.86E+02 2.11E+02 4.24E+02 2.00E+02 1.16E+03

f30 GSA 2.85E+03 5.48E+02 2.77E+03 2.06E+03 4.12E+03

BBO 8.55E+02 3.93E+02 7.99E+02 4.89E+02 3.29E+03

M1BBO 3.95E+02 1.09E+02 4.01E+02 2.34E+02 6.63E+02

M2BBO 7.94E+02 2.10E+02 7.53E+02 4.99E+02 1.46E+03

DBBO 3.35E+02 8.15E+01 3.27E+02 2.33E+02 6.11E+02

LBBO 1.12E+03 2.57E+02 1.13E+03 5.19E+02 1.81E+03

BBBO 1.25E+03 2.82E+02 1.25E+03 4.22E+02 1.96E+03

FBBO 3.58E+02 3.11E+02 6.65E+02 2.00E+02 1.67E+03

The better results are highlighted by bold

Table 3 Comparison of FBBO,
GSA, and other variant of BBO
for 30-dimensional CEC 2014
benchmark problems based on
the obtained average, standard
deviation, median, best, worst
error value

TP Algorithms Mean error SD Med Best Worst

f1 GSA 5.30E+06 6.86E+06 2.16E+06 1.10E+06 2.46E+07

BBO 1.54E+07 1.60E+07 1.38E+07 7.06E+05 4.53E+07

M1BBO 2.07E+06 8.21E+05 1.95E+06 8.46E+05 4.86E+06

M2BBO 1.24E+07 9.00E+06 8.90E+06 1.71E+06 3.82E+07

DBBO 4.35E+06 2.46E+06 4.04E+06 1.03E+06 1.11E+07

LBBO 2.40E+06 1.05E+06 2.13E+06 8.05E+05 6.05E+06

BBBO 7.72E+06 4.08E+06 6.88E+06 3.56E+06 2.86E+07

FBBO 1.14E+05 8.14E+05 1.33E+06 2.03E+04 2.30E+06

f2 GSA 8.51E+03 4.40E+03 7.80E+03 2.94E+03 1.79E+04

BBO 2.25E+05 1.10E+05 2.14E+05 8.78E+04 6.02E+05

M1BBO 1.38E+04 1.36E+04 1.00E+04 2.69E+02 5.50E+04

M2BBO 2.19E+05 9.36E+04 1.98E+05 7.78E+04 5.30E+05

DBBO 2.59E+04 2.30E+04 1.53E+04 1.14E+03 9.23E+04

LBBO 1.11E+04 4.71E+03 1.05E+04 2.34E+03 2.23E+04

BBBO 6.37E+04 4.96E+04 4.28E+04 2.01E+04 2.59E+05

FBBO 3.77E+03 3.96E+03 6.92E+03 5.58E+02 1.76E+04

f3 GSA 1.29E+04 8.69E+03 1.22E+04 3.90E+03 3.03E+04

BBO 1.56E+04 2.06E+04 1.28E+04 3.83E+02 6.41E+04

M1BBO 1.25E+04 1.48E+04 7.13E+03 9.23E+01 6.35E+04

M2BBO 1.84E+04 1.61E+04 1.32E+04 1.15E+01 8.26E+04

DBBO 2.23E+04 2.35E+04 1.82E+04 5.09E+02 1.45E+05

LBBO 1.16E+04 1.19E+04 8.27E+03 3.45E+02 6.53E+04

BBBO 7.13E+03 4.89E+03 5.41E+03 1.37E+03 2.38E+04
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Table 3 continued TP Algorithms Mean error SD Med Best Worst

FBBO 6.33E+03 5.08E+03 4.93E+03 4.88E+02 2.12E+04

f4 GSA 1.90E+02 6.70E+01 1.86E+02 4.14E−02 3.03E+02

BBO 1.03E+02 4.63E+01 1.14E+02 1.33E+00 1.89E+02

M1BBO 4.74E+01 2.71E+01 2.89E+01 7.49E+00 8.86E+01

M2BBO 1.02E+02 3.33E+01 1.13E+02 1.27E+00 1.54E+02

DBBO 5.27E+01 3.44E+01 2.83E+01 2.18E+01 1.42E+02

LBBO 9.85E+01 3.64E+01 8.36E+01 3.28E+00 1.46E+02

BBBO 1.33E+02 2.60E+01 1.45E+02 6.87E+01 1.58E+02

FBBO 1.14E+01 3.99E+01 1.29E+02 4.26E+00 1.82E+01

f5 GSA 2.00E+01 1.13E−03 2.00E+01 2.00E+01 2.00E+01

BBO 2.01E+01 4.26E−02 2.01E+01 2.00E+01 2.01E+01

M1BBO 2.00E+01 7.28E−04 2.00E+01 2.00E+01 2.00E+01

M2BBO 2.01E+01 2.16E−02 2.01E+01 2.00E+01 2.01E+01

DBBO 2.00E+01 1.16E−02 2.00E+01 2.00E+01 2.01E+01

LBBO 2.00E+01 1.83E−02 2.00E+01 2.00E+01 2.01E+01

BBBO 2.00E+01 3.42E−02 2.00E+01 2.00E+01 2.02E+01

FBBO 2.00E+01 1.94E−04 2.00E+01 2.00E+01 2.00E+01

f6 GSA 1.83E+01 2.60E+00 1.82E+01 1.38E+01 2.47E+01

BBO 1.29E+01 3.51E+00 1.28E+01 5.11E+00 2.07E+01

M1BBO 1.03E+01 2.78E+00 1.06E+01 3.70E+00 1.66E+01

M2BBO 1.26E+01 2.41E+00 1.25E+01 6.69E+00 1.80E+01

DBBO 1.16E+01 3.49E+00 1.14E+01 3.28E+00 1.96E+01

LBBO 1.42E+01 2.14E+00 1.46E+01 9.61E+00 1.92E+01

BBBO 1.63E+01 2.29E+00 1.61E+01 1.14E+01 2.19E+01

FBBO 1.02E+01 2.84E+00 1.05E+01 1.47E+00 1.65E+01

f7 GSA 9.06E−09 9.53E−10 9.18E−09 5.30E−09 9.98E−09

BBO 4.27E−01 2.27E−01 4.12E−01 2.30E−01 7.49E−01

M1BBO 1.75E−02 1.39E−02 1.43E−02 1.20E−03 5.94E−02

M2BBO 3.80E−01 1.21E−01 3.54E−01 1.63E−01 6.82E−01

DBBO 5.91E−02 3.42E−02 5.69E−02 1.51E−02 1.79E−01

LBBO 2.39E−02 2.02E−02 2.53E−02 4.81E−04 8.68E−02

BBBO 1.80E−01 8.51E−02 1.64E−01 4.84E−02 5.22E−01

FBBO 5.70E−03 2.99E−02 4.97E−02 1.36E−04 1.42E−02

f8 GSA 1.41E+02 1.14E+01 1.42E+02 1.13E+02 1.63E+02

BBO 4.06E−02 1.34E−02 4.09E−02 1.35E−02 7.53E−02

M1BBO 2.02E−02 1.38E−01 1.57E−04 2.76E−05 9.95E−01

M2BBO 4.44E−02 1.91E−02 4.08E−02 1.57E−02 1.07E−01

DBBO 3.62E−02 4.86E−02 2.22E−02 4.36E−03 3.34E−01

LBBO 5.83E−05 2.03E−04 1.11E−05 1.81E−06 1.31E−03

BBBO 1.44E−01 3.03E−01 1.49E−02 1.52E−03 1.05E+00

FBBO 1.36E−02 6.45E−01 1.50E−01 1.16E−05 2.07E−01
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Table 3 continued TP Algorithms Mean error SD Med Best Worst

f9 GSA 1.56E+02 1.53E+01 1.54E+02 1.19E+02 1.97E+02

BBO 5.06E+01 1.73E+01 4.68E+01 2.70E+01 8.46E+01

M1BBO 5.54E+01 1.40E+01 5.37E+01 1.89E+01 8.46E+01

M2BBO 5.32E+01 1.15E+01 5.28E+01 3.09E+01 8.67E+01

DBBO 5.06E+01 1.75E+01 7.76E+01 4.18E+01 1.09E+02

LBBO 5.60E+01 1.37E+01 5.67E+01 2.39E+01 8.46E+01

BBBO 8.38E+01 1.59E+01 8.06E+01 5.77E+01 1.28E+02

FBBO 5.16E+01 2.37E+01 1.43E+02 2.85E+01 1.87E+02

f10 GSA 3.28E+03 7.79E+02 3.30E+03 2.51E+03 4.41E+03

BBO 4.58E−01 1.03E−01 4.44E−01 2.95E−01 7.32E−01

M1BBO 3.33E+00 2.14E+00 2.60E+00 2.79E−01 9.57E+00

M2BBO 4.49E−01 1.12E−01 4.49E−01 3.17E−01 8.22E−01

DBBO 1.26E+00 8.90E−01 1.05E+00 3.46E−01 4.94E+00

LBBO 9.37E−01 8.23E−01 3.98E−01 1.46E−01 3.51E+00

BBBO 2.16E+00 1.63E+00 1.69E+00 2.63E−01 9.09E+00

FBBO 2.82E−01 1.03E−01 2.71E+00 1.03E−01 6.07E−01

f11 GSA 3.93E+03 7.44E+02 3.94E+03 3.03E+03 5.28E+03

BBO 1.91E+03 9.46E+02 1.99E+03 7.92E+02 2.69E+03

M1BBO 1.81E+03 4.73E+02 2.15E+03 1.89E+02 3.11E+03

M2BBO 1.90E+03 4.07E+02 2.02E+03 1.77E+02 3.16E+03

DBBO 1.85E+03 5.31E+02 2.41E+03 1.39E+02 3.65E+03

LBBO 2.35E+03 3.63E+02 2.35E+03 1.57E+03 3.03E+03

BBBO 2.46E+03 4.62E+02 2.47E+03 1.42E+03 3.53E+03

FBBO 1.71E+03 5.52E+02 1.80E+03 1.00E+02 2.53E+03

f12 GSA 5.41E−04 9.87E−04 2.25E−04 1.64E−08 4.99E−03

BBO 1.34E−01 7.84E−02 1.38E−01 7.41E−02 2.24E−01

M1BBO 1.32E−01 5.77E−02 1.64E−01 7.66E−02 3.07E−01

M2BBO 1.33E−01 3.60E−02 1.32E−01 7.24E−02 2.30E−01

DBBO 1.31E−01 4.02E−02 1.33E−01 6.75E−02 2.43E−01

LBBO 1.47E−01 5.73E−02 1.33E−01 4.46E−02 2.99E−01

BBBO 1.85E−01 4.95E−02 1.77E−01 1.03E−01 3.12E−01

FBBO 1.08E−01 7.38E−02 2.07E−01 9.10E−02 4.32E−01

f13 GSA 2.09E−01 4.55E−02 2.06E−01 1.37E−01 3.25E−01

BBO 3.46E−01 9.18E−02 3.35E−01 2.26E−01 6.41E−01

M1BBO 2.66E−01 5.53E−02 2.63E−01 1.56E−01 3.87E−01

M2BBO 3.42E−01 6.01E−02 3.32E−01 2.43E−01 4.89E−01

DBBO 2.66E−01 6.86E−02 2.69E−01 1.39E−01 4.31E−01

LBBO 3.05E−01 6.54E−02 3.00E−01 1.49E−01 5.16E−01

BBBO 2.97E−01 4.21E−02 3.01E−01 2.04E−01 4.10E−01

FBBO 1.75E−01 9.97E−02 2.05E−01 1.01E−01 3.21E−01

f14 GSA 3.07E−01 7.51E−02 3.05E−01 1.67E−01 4.16E−01

BBO 3.91E−01 2.77E−01 2.92E−01 1.96E−01 8.03E−01

M1BBO 2.87E−01 1.00E−01 2.63E−01 1.60E−01 6.68E−01

M2BBO 3.42E−01 1.83E−01 2.68E−01 1.43E−01 8.07E−01

DBBO 3.90E−01 1.94E−01 2.95E−01 1.35E−01 9.09E−01

LBBO 2.18E−01 2.97E−02 2.17E−01 1.61E−01 2.75E−01
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Table 3 continued TP Algorithms Mean error SD Med Best Worst

BBBO 1.75E−01 2.57E−02 1.72E−01 1.28E−01 2.33E−01

FBBO 3.09E−01 1.23E−01 2.94E−01 1.58E−01 8.14E−01

f15 GSA 2.97E+00 7.55E−01 3.02E+00 1.66E+00 4.46E+00

BBO 9.50E+00 6.33E+00 8.77E+00 4.84E+00 2.05E+01

M1BBO 7.81E+00 2.47E+00 7.63E+00 4.20E+00 1.31E+01

M2BBO 9.28E+00 3.09E+00 8.49E+00 4.98E+00 2.21E+01

DBBO 6.31E+00 1.64E+00 6.03E+00 3.33E+00 1.08E+01

LBBO 1.35E+01 4.48E+00 1.28E+01 6.83E+00 2.65E+01

BBBO 1.65E+01 4.94E+00 1.61E+01 5.25E+00 2.93E+01

FBBO 2.57E+00 7.44E−01 2.26E+00 1.52E+00 4.21E+00

f16 GSA 1.37E+01 9.92E−01 1.38E+01 1.27E+01 1.45E+01

BBO 9.45E+00 1.03E+00 9.50E+00 8.09E+00 1.11E+01

M1BBO 9.53E+00 6.84E−01 1.06E+01 8.08E+00 1.18E+01

M2BBO 9.37E+00 7.48E−01 9.30E+00 7.95E+00 1.13E+01

DBBO 9.28E+00 7.24E−01 1.02E+01 8.05E+00 1.21E+01

LBBO 9.57E+00 7.90E−01 9.78E+00 7.78E+00 1.10E+01

BBBO 1.04E+01 6.96E−01 1.04E+01 8.79E+00 1.18E+01

FBBO 9.12E+00 6.60E−01 9.26E+00 6.18E+00 1.09E+01

f17 GSA 3.37E+05 3.28E+05 2.91E+05 8.15E+04 1.25E+06

BBO 3.21E+06 2.22E+06 2.68E+06 9.25E+05 7.97E+06

M1BBO 3.67E+05 2.55E+05 3.10E+05 6.64E+04 1.39E+06

M2BBO 3.08E+06 2.02E+06 3.74E+06 9.03E+05 7.83E+06

DBBO 1.74E+06 1.22E+06 1.42E+06 1.71E+05 4.90E+06

LBBO 4.74E+05 2.90E+05 4.29E+05 1.22E+05 1.45E+06

BBBO 3.23E+05 1.10E+05 3.08E+05 1.03E+05 5.85E+05

FBBO 8.12E+04 1.05E+05 5.85E+04 3.36E+03 3.65E+05

f18 GSA 4.71E+02 3.69E+02 3.41E+02 1.63E+02 1.39E+03

BBO 1.21E+04 8.06E+03 1.12E+04 2.28E+03 3.70E+04

M1BBO 3.22E+03 4.33E+03 1.98E+03 3.38E+01 2.19E+04

M2BBO 1.15E+04 7.33E+03 8.76E+03 1.42E+03 3.11E+04

DBBO 6.86E+03 8.87E+03 3.42E+03 4.50E+01 4.77E+04

LBBO 9.80E+02 1.44E+03 4.81E+02 4.12E+01 9.32E+03

BBBO 3.48E+02 5.31E+02 1.63E+02 3.60E+01 3.06E+03

FBBO 3.50E+02 2.20E+03 1.25E+03 3.92E+01 8.34E+03

f19 GSA 6.91E+01 3.71E+01 8.62E+01 9.71E+00 1.04E+02

BBO 1.84E+01 2.47E+01 9.02E+00 4.42E+00 8.67E+01

M1BBO 1.48E+01 1.65E+01 1.08E+01 3.94E+00 7.35E+01

M2BBO 1.74E+01 2.30E+01 8.36E+00 4.50E+00 7.92E+01

DBBO 1.42E+01 1.14E+01 1.32E+01 7.14E+00 9.25E+01

LBBO 8.72E+00 1.52E+00 8.93E+00 4.78E+00 1.28E+01

BBBO 1.25E+01 1.90E+01 8.88E+00 6.06E+00 1.31E+02

FBBO 8.99E+00 2.39E+01 1.01E+01 4.00E+00 1.34E+02

f20 GSA 2.36E+04 6.99E+03 2.35E+04 1.54E+04 3.47E+04

BBO 4.32E+04 2.49E+04 4.23E+04 3.01E+03 1.05E+05

M1BBO 2.85E+04 1.52E+04 3.02E+04 3.12E+03 6.74E+04

M2BBO 4.32E+04 2.43E+04 3.71E+04 7.51E+03 1.09E+05
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Table 3 continued TP Algorithms Mean error SD Med Best Worst

DBBO 1.78E+04 1.49E+04 1.39E+04 1.53E+03 6.98E+04

LBBO 2.67E+04 1.29E+04 2.43E+04 4.94E+03 6.22E+04

BBBO 1.60E+04 5.85E+03 1.54E+04 9.02E+02 3.17E+04

FBBO 4.10E+03 4.46E+03 2.48E+03 2.88E+02 2.84E+04

f21 GSA 1.37E+05 7.45E+04 1.25E+05 4.55E+04 3.05E+05

BBO 9.30E+05 1.22E+06 7.09E+05 5.12E+04 4.05E+06

M1BBO 3.31E+05 2.26E+05 2.94E+05 3.46E+04 8.82E+05

M2BBO 8.11E+05 7.56E+05 5.21E+05 5.56E+04 3.11E+06

DBBO 8.31E+05 1.16E+06 8.26E+05 4.39E+04 4.98E+06

LBBO 2.81E+05 2.32E+05 2.12E+05 1.29E+04 9.03E+05

BBBO 2.07E+05 1.30E+05 1.91E+05 5.53E+04 8.47E+05

FBBO 1.39E+05 3.39E+05 3.76E+05 1.21E+04 1.45E+06

f22 GSA 9.34E+02 3.05E+02 9.51E+02 5.23E+02 1.37E+03

BBO 5.11E+02 3.20E+02 5.39E+02 4.74E+01 8.87E+02

M1BBO 4.49E+02 1.66E+02 4.84E+02 2.21E+01 8.34E+02

M2BBO 5.01E+02 2.40E+02 5.85E+02 4.63E+01 1.09E+03

DBBO 5.06E+02 2.10E+02 4.96E+02 3.46E+01 9.58E+02

LBBO 5.60E+02 1.93E+02 5.34E+02 1.81E+02 9.86E+02

BBBO 6.14E+02 1.88E+02 6.39E+02 1.74E+02 9.82E+02

FBBO 3.65E+02 1.54E+02 4.67E+02 2.06E+01 7.30E+02

f23 GSA 2.72E+02 8.10E+01 3.19E+02 2.00E+02 3.29E+02

BBO 3.16E+02 8.92E−01 3.16E+02 3.15E+02 3.20E+02

M1BBO 3.14E+02 2.70E−02 3.14E+02 3.14E+02 3.14E+02

M2BBO 3.16E+02 8.64E−01 3.16E+02 3.15E+02 3.20E+02

DBBO 3.14E+02 3.20E−01 3.14E+02 3.14E+02 3.16E+02

LBBO 3.15E+02 5.25E−02 3.15E+02 3.15E+02 3.15E+02

BBBO 3.16E+02 3.29E−01 3.16E+02 3.15E+02 3.17E+02

FBBO 2.00E+02 0.00E+00 2.00E+02 2.00E+02 2.00E+02

f24 GSA 2.00E+02 1.72E−02 2.00E+02 2.00E+02 2.00E+02

BBO 2.29E+02 4.59E+00 2.28E+02 2.24E+02 2.44E+02

M1BBO 2.28E+02 4.34E+00 2.27E+02 2.24E+02 2.43E+02

M2BBO 2.29E+02 5.30E+00 2.28E+02 2.24E+02 2.49E+02

DBBO 2.33E+02 7.48E+00 2.30E+02 2.23E+02 2.46E+02

LBBO 2.25E+02 1.41E+00 2.25E+02 2.22E+02 2.29E+02

BBBO 2.19E+02 5.77E+00 2.21E+02 2.07E+02 2.26E+02

FBBO 2.00E+02 9.99E−10 2.00E+02 2.00E+02 2.00E+02

f25 GSA 2.00E+02 2.40E−10 2.00E+02 2.00E+02 2.00E+02

BBO 2.09E+02 3.18E+00 2.08E+02 2.06E+02 2.17E+02

M1BBO 2.02E+02 2.71E+00 2.01E+02 2.00E+02 2.16E+02

M2BBO 2.10E+02 3.63E+00 2.09E+02 2.05E+02 2.22E+02

DBBO 2.02E+02 6.40E−01 2.02E+02 2.01E+02 2.04E+02

LBBO 2.14E+02 2.33E+00 2.14E+02 2.08E+02 2.19E+02

BBBO 2.06E+02 3.49E+00 2.07E+02 2.00E+02 2.12E+02
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Table 3 continued TP Algorithms Mean error SD Med Best Worst

FBBO 2.00E+02 0.00E+00 2.00E+02 2.00E+02 2.00E+02

f26 GSA 2.00E+02 7.95E−03 2.00E+02 2.00E+02 2.00E+02

BBO 1.18E+02 4.22E+01 1.00E+02 1.00E+02 2.02E+02

M1BBO 1.04E+02 1.94E+01 1.00E+02 1.00E+02 2.00E+02

M2BBO 1.12E+02 3.22E+01 1.00E+02 1.00E+02 2.01E+02

DBBO 1.00E+02 7.07E−02 1.00E+02 1.00E+02 1.00E+02

LBBO 1.47E+02 4.98E+01 1.01E+02 1.00E+02 2.00E+02

BBBO 1.79E+02 4.10E+01 2.00E+02 1.00E+02 2.00E+02

FBBO 1.00E+02 2.68E+01 1.00E+02 1.00E+02 1.00E+02

f27 GSA 2.71E+03 1.60E+03 2.69E+03 3.80E+02 5.65E+03

BBO 5.96E+02 1.31E+02 6.34E+02 4.03E+02 7.78E+02

M1BBO 5.61E+02 1.12E+02 5.74E+02 4.03E+02 7.62E+02

M2BBO 6.22E+02 1.16E+02 6.51E+02 4.04E+02 8.22E+02

DBBO 5.51E+02 1.19E+02 5.59E+02 4.02E+02 8.48E+02

LBBO 5.80E+02 1.56E+02 6.36E+02 4.02E+02 8.38E+02

BBBO 5.51E+02 1.74E+02 4.15E+02 4.04E+02 8.63E+02

FBBO 2.04E+02 2.85E+01 2.00E+02 2.00E+02 4.05E+02

f28 GSA 2.26E+03 7.82E+02 2.29E+03 9.23E+02 4.67E+03

BBO 1.00E+03 1.99E+02 9.67E+02 7.88E+02 1.62E+03

M1BBO 4.48E+02 1.84E+01 4.49E+02 4.03E+02 4.83E+02

M2BBO 9.86E+02 1.18E+02 9.67E+02 8.18E+02 1.40E+03

DBBO 4.51E+02 7.38E+01 4.23E+02 3.92E+02 8.09E+02

LBBO 1.42E+03 5.57E+02 1.26E+03 8.34E+02 3.87E+03

BBBO 1.73E+03 6.64E+02 1.48E+03 9.25E+02 3.42E+03

FBBO 2.00E+02 0.00E+00 2.00E+02 2.00E+02 2.00E+02

f29 GSA 4.38E+02 9.87E+02 2.00E+02 2.00E+02 4.86E+03

BBO 1.67E+03 5.93E+02 1.59E+03 1.02E+03 2.82E+03

M1BBO 2.11E+02 1.70E+00 2.11E+02 2.07E+02 2.15E+02

M2BBO 1.64E+03 1.17E+06 1.46E+03 1.01E+02 8.46E+06

DBBO 2.20E+02 2.27E+01 2.13E+02 2.05E+02 3.11E+02

LBBO 1.07E+03 2.94E+02 1.05E+03 5.91E+02 2.01E+03

BBBO 1.06E+03 3.37E+02 9.71E+02 4.93E+02 2.06E+03

FBBO 1.35E+02 1.01E+00 1.24E+02 1.00E+02 2.14E+02

f30 GSA 1.07E+04 1.08E+04 8.36E+03 6.06E+03 8.37E+04

BBO 4.06E+03 1.32E+03 3.66E+03 1.48E+03 7.12E+03

M1BBO 7.28E+02 2.34E+02 7.08E+02 2.70E+02 1.55E+03

M2BBO 4.18E+03 1.34E+03 4.02E+03 1.79E+03 8.41E+03

DBBO 8.22E+02 3.92E+02 6.97E+02 3.87E+02 2.16E+03

LBBO 2.73E+03 7.01E+02 2.69E+03 9.84E+02 4.11E+03

BBBO 3.91E+03 1.20E+03 3.62E+03 2.18E+03 8.07E+03

FBBO 6.17E+02 3.55E+03 5.65E+03 1.18E+02 1.43E+03

The better results are highlighted by bold
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Fig. 4 10-Dimensional Boxplots; a for mean error, b for standard deviation, c for median, d for best and e for worst

algorithm and ‘=’ sign appears if FBBO is not significantly
different than compared algorithms.Out of 210 comparisons,
there are 152 and 154 ‘+’ signs for 10- and 30-dimensional
problems, respectively. Therefore, the conclusion from all
analyses is that FBBO is significantly a better optimizer than
other considered algorithms. The so-obtained FBBO is bet-
ter in terms of accuracy which is the key improvement of the
proposed algorithm.

5.4 Algorithm complexity

As per the suggestion of IEEE CEC 2014, the complexity
of an algorithm for 10 and 30 dimension is calculated. The
complexity is determined in terms of T̂ 2 and (T̂ 2−T 1)/T 0,
where T 0, T 1 and T̂ 2 are given below:

(a) T 0 is the computing time for the test program given as
follows:
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Fig. 5 30-Dimensional Boxplots; a for mean error, b for standard deviation, c for median, d for best and e for worst

for i = 1 : 10000 do
x= 0.55 + (double) i;
x=x + x; x=x/2; x=x*x; x=sqrt(x); x=log(x); x=exp(x);
x=x/(x+2);

end for

(b) T 1 is the computing time for 2 × 105 evaluation of f18
of a given dimension D.

(c) T 2 is the computing time for the algorithm with 2×105

evaluations of f18 of a given dimension D.
(d) Execute five T 2 values in step c and evaluate T̂ 2 =Mean

(five T 2 values)

The complexity of the algorithm is evaluated in terms of
T 0, T 1, T̂ 2 and (T̂ 2-T 1)/T 0 on 10 and 30 dimensions. The
algorithm complexities are shown in Table 6. For clear under-
standing the time complexity is also shown in Fig. 6 for both
10 and 30 dimensions. This shows that FBBO has a slightly
higher complexity as compared to other considered algo-
rithms.

In case of accuracy, Tables 2 and 3 show that FBBO per-
forms better on 21 and 22 functions out of 30 functions,
in 10 and 30-dimensional space, respectively. In Table 6,
6 algorithms (BBBO, M2BBO, M1BBO, LBBO, GSA and
FBBO) have more complexity than BBO in 10-dimensional
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Table 4 Mann–Whitney U rank-sum test at α = 0.05 level of signifi-
cance with FBBO based on average error for 10-dimensional CEC 2014
benchmark set (TP: Test Problem)

TP GSA BBO M1BBO M2BBO DBBO LBBO BBBO

f1 + + + + + + +
f2 + + + + + + +
f3 + + + + + + +
f4 + + + = = + +
f5 + = + = + = =
f6 + + = + = + +
f7 = + + + + + +
f8 + + = + + − +
f9 + − − − − − −
f10 + + + + + = +
f11 + + + + + + +
f12 − − + − − + +
f13 = + + + + + +
f14 + = + + = + =
f15 + + + + + + +
f16 + = = = = = +
f17 + + + + − + +
f18 + + + + + + +
f19 + + + + + + =
f20 + + = + = = =
f21 + + + + = + +
f22 + = = + + + +
f23 + + + + + + +
f24 + = = = = = =
f25 + + + + + + +
f26 + = = = = = =
f27 + + + + + + +
f28 + + + + + + +
f29 + = − = − − +
f30 + + + + − + +
Total
number
of ‘+’ signs

27 21 21 22 17 21 23

space and in 30-dimensional space, 5 algorithms (M1BBO,
M2BBO, LBBO, FBBO and GSA) have larger complex-
ity than BBO. Here it is observed that if one is concerned
about the accuracy then one has to deal with high complex-
ity. However, the complexity of DBBO is minimum over
all considered algorithms for both 10- and 30-dimensional
space. Based on analysis of the results given in Tables 2, 3
and 6, it can be seen that the complexity of FBBO is propor-
tional to accuracy. Therefore, it is justified that FBBO has
larger complexity as it is better in accuracy.

Table 5 Mann–Whitney U rank-sum test at α = 0.05 level of signifi-
cance with FBBO based on average error for 30-dimensional CEC 2014
benchmark set (TP: Test Problem)

TP GSA BBO M1BBO M2BBO DBBO LBBO BBBO

f1 + + + + + + +
f2 + + + + + + +
f3 + + + + = + =
f4 + + = + + + +
f5 = = = = = = =
f6 + = = = = + +
f7 − + + + + + +
f8 + + = + + − +
f9 + = + = = + +
f10 + = + = + + +
f11 + + = + = + +
f12 − = = = = = =
f13 = + = + = + +
f14 = = = = + − −
f15 = + + + + + +
f16 + = = = = = =
f17 + + + + + + +
f18 + + + + + + =
f19 + + = + = = +
f20 + + + + + + +
f21 = + + + + + +
f22 + + + + + + +
f23 + + + + + + +
f24 + + + + + + +
f25 + + + + + + +
f26 + + = = = + +
f27 + + + + + + +
f28 + + + + + + +
f29 + + + + + + +
f30 + + = + + + +
Total
number
of ‘+’ signs

23 23 18 22 20 24 24

6 Conclusion

This paper presents fireworks-inspired biogeography-based
optimization (FBBO) to improve the solution diversity.
FBBO uses migration and mutation operator of BBO algo-
rithm and explosion operator of fireworks algorithms (FWA).
A promising search strategy has been developed without
affecting the algorithms’ original efficiencies. The numerical
results show that there is a scope of research in hybridizing
meta-heuristics to solve complex continuous optimization
problems. The proposed FBBO is a better tool to solve
unconstrained nonlinear optimization problems. However, as
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Table 6 Algorithm complexity (in s)

D = 10 D = 30

T 0 0.9302 0.9302

T 1 3.6979 4.6848

T̂ 2

GSA 15.3796 104.3042

BBO 13.5666 27.2668

M1BBO 15.7457 133.5399

M2BBO 15.1084 140.9946

DBBO 11.6635 86.8240

LBBO 17.0572 132.3959

BBBO 16.0102 117.8927

FBBO 67.7974 187.8814

(T̂ 2 − T 1)/T 0

GSA 12.5588 107.0989

BBO 10.6096 24.2774

M1BBO 12.9523 138.5297

M2BBO 12.2672 146.5441

DBBO 8.5636 88.3063

LBBO 14.3623 137.2998

BBBO 13.2367 121.7077

FBBO 68.9122 196.9512

Fig. 6 Algorithm complexity (in s)

indicated by the numerical experiments, the parameter value
needs to be fine tuned to obtain the best results on different
problems. This hybrid approach can be applied to solve real-
world optimization problems. FBBO can also be customized
for constrained and multiobjective optimization problems.
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