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Abstract

The Grey Wolf Optimizer (GWO) is a recently developed population-based meta-heuristics algorithm that mimics the lead-
ership hierarchy and hunting mechanism of grey wolves in nature. Although, GWO has shown very good results on several
real-life applications but still it suffers from some issues like, the low exploration and slow convergence rate. Therefore in
this paper, an improved grey wolf optimizer is proposed to modify the exploration as well as exploitation abilities of the
classical GWO. This improvement is performed by using the explorative equation and opposition-based learning (OBL). The
validation of the proposed modification is done on a set of 23 standard benchmark test problems using statistical, diversity
and convergence analysis. The experimental results on test problems confirm that the efficiency of the proposed algorithm

is better than other considered metaheuristic algorithms.

Keywords Swarm intelligence - Grey wolf optimizer - Explorative equation - Opposition-based learning (OBL) -

Exploration and exploitation

1 Introduction

Over recent years, Swarm intelligence has become a promi-
nent area in the field of nature—inspired techniques. Mostly,
it is being used to solve real-world optimization problems.
It is based on the collective behavior of creatures living in
swarms or colonies. Swarm based optimization algorithms
find a solution by the collaborative trial and error method.
The well-known techniques in this category are Particle
Swarm Optimization (PSO) (Kennedy 2010), Artificial Bee
Colony(ABC) (Karaboga 2005), Ant Colony Optimiza-
tion (ACO) (Dorigo et al. 2006), Firefly Optimization (FO)
(Yang 2010), Cuckoo Search Optimization (CSO) (Yang
and Deb 2009), Genetic Algorithm (GA) (Goldberg 2006),
Spider Monkey Optimization (SMO) (Bansal et al. 2014),
Ant lion optimizer (Mirjalili 2015a), Harris hawks optimiza-
tion (HHO) (Heidari et al. 2019), Moth-flame Optimisation
(MFO) (Mirjalili 2015¢c) and Grey Wolf Optimizer (GWO)
(Mirjalili et al. 2014). GWO algorithm is comparatively a
new and well-regarded optimization algorithm in the field
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of swarm intelligence. GWO, proposed by (Mirjalili et al.
2014) in 2014, is inspired by the leadership hierarchy and
hunting mechanism of grey wolves in nature.

In the last few years, significant growth in the application
of GWO is observed for solving different real-life applica-
tion problems. GWO has been used for training Multi-Layer
Perceptron (MLP) (Mirjalili 2015b). Emary et al. (2016)
have proposed a novel binary version of GWO and used
to select optimal feature subset for classification purposes.
Mohanty et al. (2015) have proposed a new maximum power
point tracking (MPPT) design using the GWO technique for
the photovoltaic system under partial shading conditions.
In 2015 (Sulaiman et al. 2015), GWO is used for solving
optimal reactive power dispatch problem (ORPD). Komaki
and Kayvanfar (2015) have proposed the GWO algorithm for
the two-stage assembly flow shop scheduling problem with
a release time of jobs which is applicable in many industrial
areas such as computer manufacturing industry, fire engine
assembly plant, etc. Jayabarathi et al. (2016) proposed eco-
nomic dispatch using a hybrid GWO for solving economic
dispatch problems that are nonlinear, non-convex and dis-
continuous in nature, with numerous equality and inequality
constraints. El-Fergany and Hasanien (2015) proposed single
and multi-objective optimal power flow using GWO and DE
algorithms. GWO algorithm-based tuning of fuzzy control
systems with reduced parametric sensitivity (Precup et al.
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2016). Jayakumar et al. (2016) proposed GWO for Com-
bined Heat and Power Dispatch (CHPD) with cogeneration
systems. Kamboj et al. (2016) proposed solution of non-
convex economic load dispatch problem using GWO and
many other applications have shown the ability of GWO in
terms of exploration strength compared to other algorithms.

The aim of the present work is to increase the search
mechanism of the classical GWO with the help of two
important concepts known as explorative equation which
has been firstly used in the exploration phase of (Heidari
et al. 2019) and opposition-based learning (OBL) (Tizhoosh
2005). Here the explorative equation is introduced to
increase the exploration ability of classical GWO. To handle
the stagnation problem and maintaining the faster conver-
gence, OBL is incorporated into the classical GWO. In this
paper, the greedy selection approach is also engaged within
the algorithm to attract the GWO toward the search domain
of search space. To evaluate the performance of the pro-
posed algorithm, a set of 23 classical benchmark test func-
tions have been taken. The experimental results show that
the improved GWO is a better optimizer.

The remaining paper is organized as follows—a brief
description of the classical GWO and OBL are explained in
Sect. 2. In Sect. 3, a modified version of GWO is presented.
In Sect. 4, a complete set of experimental results with differ-
ent analyses are given. Section 5 concludes the work.

2 Preliminaries
2.1 Grey Wolf Optimizer

The GWO algorithm was developed in 2014 by Mirjalili
et al. (2014). The GWO algorithm is inspired by social
and leadership behavior of grey wolves. Grey wolves, also
known as Canis Lupus always live in a pack of approxi-
mately 5-12 wolves. In the pack, the Dominant hierarchy
is the main feature of a grey wolf pack. To maintain the
discipline within the pack, their pack is divided into four
types of wolves (Mirjalili et al. 2014). The first category is
a leader wolf called alpha (@) wolves which are the domi-
nant wolf of the pack and are the decision-maker. The sec-
ond category is beta (f) wolves which are subordinate to
the « in their absence and works as a messenger for the
a wolves. The third category wolves are delta (6) wolves
which are caretakers of the pack and protect the pack from
enemies and the fourth category consists of those wolves
that have permission to eat only in the end. These wolves
are called omega (w) wolves which commonly play the role
of scapegoat. The w wolves are very important part of the
pack because in the absence of these wolves, the wolf pack
may face internal fighting and problems. This is due to the
venting of violence and frustration of all grey wolves by
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the omega wolves. These wolves also assist in satisfying
the entire pack and maintaining the dominance structure. In
some cases, @ wolves also work as babysitters.

The group hunting is another important social behavior
of grey wolves in the pack. According to (Muro et al. 2011)
their hunting process involves three steps-

1. Chasing and approaching the prey
2. Encircling the prey
3. Attacking the prey.

2.1.1 Mathematical model

In this subsection, we describe the mathematical models of
social hierarchy, encircling prey, hunting, attacking prey and
search for prey.

2.1.2 Social hierarchy

The algorithm starts with three best solutions which are
assigned random positions in the search space. @, f and 6
correspond to the first best, the second-best, and the third-
best solutions respectively, and other solutions are consid-
ered as @. The w solutions iteratively improve their positions
by following a, § and 6 wolves.

2.1.3 Encircling prey

The encircling process of grey wolves is calculated from the
following mathematical equations:

1

X =yl —AXD (1)
where,
A=2XaXr —a )
a—2—2<i> 3

=2-2( 3
D= ICXxItWy — x| )
C=2Xr, )

and x! is the position of the prey at rth iteration, x*D and
x" are the positions of the wolf at (z + 1)¢th and tth iterations,
respectively. It is clear from Eq. (2) that the value of vector
A is in the range [ — a, a] which is responsible for exploration
and exploitation. a is a linearly decreasing vector from 2 to
0 over iterations and calculated from Eq. (3). At the initial
iteration, the value of vector A is maximum, but as iteration
counter progresses the value of A decreases. It is shown in

Fig. 1. Cis arandom vector in the range [0, 2]. r; and r, are
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random numbers in [0, 1]. T denotes the maximum number
of iterations.
Equation (1) indicates that the wolves to decrease dis-
tances from their prey (x! ). The distance depends on the
prey
vector A and D.

2.1.4 Hunting

For mathematically simulate the hunting behavior of grey
wolves, it is assumed that the three best solutions a, f and 6
wolves have better knowledge about the location of the prey
(optimal solution). In this way, the updated positions of each
wolf based on the positions of @, f and 6 using the above
equations are (Mirjalili et al. 2014):

X =x —A; XD, (6)
Xy =x;]—A2><Dﬂ )
X3 = x5 — Ay X Dy 3
where,

A1=2><a><r1—a, A2=2Xa><r;—a,

D, =|C; xx = x|, Dﬁ=|C2><x;7—x’|,

/! /! 1
C =2xr/, C,=2xr,, Cy=2Xr]
D) =x1 + Xy + X3
3

in the range [0, 1]. A}, A, and A; are random vectors in the
range [ — a, a]. a is defined by equation (3). C,, C, and C; are
random vectors in the range [0, 2]. Equation (9) is the posi-
tions update equation of grey wolves and average of posi-
tions corresponding to «, ff and § wolf.

2.1.5 Attacking prey (Exploitation) and search for prey
(Exploration)

In the GWO algorithm, A and C are responsible for explora-
tive and exploitative behaviors. The A is a random value in
the range [—a, a]. a is linearly decreasing 2 to 0 and defined
by Eq. (5). When |A| > 1 and C > 1, the wolf explores the
whole search space. In addition, exploitation happens when
|A] < land C < 1.

The pseudo code of GWO algorithm is presented in
Algorithm 1.

’
A3=2><a><r3—a
Dy =|C;3 x x5 — x|

€))

Here, x!, x;} and xfs are the positions of a, f and § wolf at tth

/rl

iteration and x’ represents the solution in rth iteration. st

r;, r}/s v} and rl are random vectors whose components are
2
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Fig. 1 Decreasing pattern for range of A

Algorithm 1 Grey Wolf Optimizer (GWO) algorithm

Initialize the parameters
Initialize the n grey wolves positions say z;(i = 1,2,...n)
Evaluate the fitness say f(z;) at z;
Select «, 8, and & wolf
initalize a, A and C
initialize t = 0
while Termination criteria is meet do
for for each wolf do
update the position of wolves using (9)
end for
update a, A and C
update «, 8, and § wolf
t=t+1
end while
return the a wolf

2.2 Opposition-based learning (OBL)

The concept of OBL is introduced in 2005 (Tizhoosh 2005)
which is used by many researchers to enhance the ability
to learn, search and optimize the metaheuristic algorithms.
In OBL, for each solution of the population, opposite solu-
tions are generated and then the best solutions (equal to
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population size) are retained so that the population size
remains the same. The opposite of a real number x €[a, b]
can be given by X as follows:

X=a+b—x (10)

a and b are the lower and upper bounds of the solution
space in R. In D— dimensional space the opposite solution
X=(x,,%,, X3, ..., Xp)of avector x = (x;,X,,...,Xp) € RP can
be calculated as:

Y=a+b—-x, j=12,...,D

Y

Here, a; and b; are the lower and upper bounds of the solu-
tion space in jth dimension. Finally, in the process of opti-
mization method, the current solution x is selected if f{(x) is
better than f()_c); otherwise, x is selected.

3 Proposed method

The classical GWO algorithm has fewer number of param-
eters to perform the search and is easy to implement. How-
ever, the experimental analyses show that in some cases,
it is prone towards the local optima due to insufficient
exploration ability of grey wolves. Hence, there is scope of
enhancing the explorative ability of wolves to make it a bet-
ter optimizer. Therefore, we have introduced an explorative
equation (Heidari et al. 2019) for the grey wolves, so that
the large area of the search space can be explored. In addi-
tion to this, to maintain the convergence speed (or in fact to
make better) efficiently, an OBL (Tizhoosh 2005) is used for
leading wolves in each iteration.

The description of all the applied strategies is as follows:

First, an explorative equation for the wolves is introduced,
which is given by:

1 _ 1 _ t
XD = { Xrang ~T1 X |(xrand 2X ry XX s rs 2 0.5.

W g = X) = 13 X (b + 14 X (ub = 1)), r5 < 0.5.

where x*1 is the position of grey wolf in the (¢ + 1)¢h itera-
tion, x/, Ioha is the position vector of alpha wolf at rth iteration,
x' is the position vector of grey wolf in the rth iteration,
Iy, ¥y, 13, 1y and rs are random numbers in [0, 1], b and ub
are the lower and upper bounds of decision variables. xian 4
is a randomly selected wolf at tth iteration from the popula-
tion and x,, is the average position of grey wolves’s position.
In this explorative equation, the current new solution is gen-
erated around the random solution or best solution which
helps to enhance exploration and communications among
the grey wolves. The newly generated positions of wolves
will pass to the next iteration or not, this will decide by the
greedy apporach described below:

L+ { x(t+l)’ f(x(’“)) Sf(xt)

X!, otherwise

13)

where x“*D and x' are the positions of wolves at (¢ + 1)th
and rth iterations, respectively. f(x(*1) is the fitness value
at (t + 1)th solution and f(x') is the fitness value at 7th solu-
tion. Here it is assumed that the optimization problem under
consideration is a minimization problem. If the explorative
equation (12) fails to provide a better position then the equa-
tion (9) of the classical GWO is applied to update the solu-
tion x.

In addition to this, to maintain or to improve the con-
vergence rate and to avoid stagnation, an OBL is employed
for leading wolves («, § and 6 wolf). The opposite solution
corresponding to leading wolves are calculated as follows:

X,, = (Ib + ub) — x,, (14)

where, m = 1 refers to a wolf, m = 2 refers to f wolf and
m = 3refers to § wolf. X, is the opposite position of leading
wolf (a, f or 6 wolf ) and x,, is the position of leading wolf
(a, poréwolf) . b and ub are the lower and upper bounds
of the decision variable. After that, all the updated wolves
are sorted and then, the last 3 wolves having worse fitness

(12)  are replaced by the opposite wolves, which are obtained
by Eq. (14). The steps of the proposed algorithm Improved
Table 1 Unimodal benchmark functions
Name Benchmark dim Range Jnin
Sphere function flw =X, xl? 30 [— 100,100] 0
Schwefel’s problems 2.22 2=, |xi2|+ IT, 1l 30 [-10,10] 0
Schwefel’s problems 1.2 n i 2 30 [— 100,100] 0
P f3(x) = Zizl (2}_1 xj)

Schwefel’s problems 2.21 FA(x) = max, {|xl.|, 1<i< n} 30 [= 100,100]
Generalized Rosenbrock’s function £500) = 2:-: [IOO(XHI _ x,‘2>2 n (xi _ 1)2] 30 [—30,30]
Step function £600 =3, ([ +0.3])? 30 [~ 100,100] 0
Quartic function with noise f1x) = Z:?=l ix? + random|0, 1) 30 [— 1.28,1.28] 0
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Table 2 Multimodal benchmark functions

Name Benchmark dim Range Srnin
Generalized Schwefel’s problem 2.26 gy _ g _ ( _ ) 30 [-500,500] —418.9829
£8() = X, —x;sin ( y/[x] dim
Generalized Rastrigin’s function F9) = 27:1 [xl? —10cos (27;xl.) + 10] 30 [— 0
5.12,5.12)
Ackley’s function £1008) = =20 exp(—=0.2 /% Y, 2)—exp (% Y cos (Zﬂxi)) 30 [-32,32] 0
+20+e¢
lized Gri k functi X - A
Generalized Griewank function () = 401% ;r=1 1'2_ H:‘l:l cos (\x/_;) i1 30 [-600,600] O

Generalized penalized function F12(x) = ;_r{ 10sin (”yl) " Z:u:—ll O - 1)?2 [1 +10 sinz(ﬂym)] 30 [-50,50] 0
+(@, — 1?} + X, u(x;, 10,100,4)

k(x; —a)" x;>a
u(x;,a,k,my=4 0 —a<x;<a
k(=x; —a)" x; < —a

x;+1

=1+

Generalized penalized function F13(x) = 0.1{sin2(37rx]) + z;t:l (xi _ 1)2 [1 + sin2(37rx,~ + 1)] 30 [-50,50] O

+(x, = D?[1 +sin*27zx,)| } + X1, u(x;,5,100,4)

GWO (IGWO) are presented in the form of pseudo code in
Algorithm 2.

Algorithm 2 Improved grey wolf optimizer (IGWO) algorithm

Initialize the parameters
Initialize n grey wolves positions say z;(1 =1,2,...n)
Evaluate the fitness f(z;) at z;
Select a, 3, and § wolf
initalize a, A and C
t=0
while Termination criteria is meet do
fori=1:ndo
Update the positions of grey wolves using (12) say x;
Evaluate the fitness say f(x]) at =}
if f(z}) < f(x;) then
F(w3) = f(a?)
x; = xT*
else
Update the positions of each grey wolf using position updated equation of GWO algorithm say (x}*)
Evaluate the fitness at x}* say f(x}*)
end if
end for
Update «, 8, and § wolf of the wolf pack
Apply OBL on «, 8, and § wolf obtain opposite aoppos, Boppos, and doppos of a, B, and § respectively
Include aoppos, Boppos, and doppos in the current population and sort ascending to fitness from best to worst
Remove worst 3 solutions
Select a, 8 and § wolf in the updated popuation
t=t+1
end while
return the a

4 Experimental results and analysis These benchmark functions are denoted by f1, f2.../23. In

these tables, unimodal (f1—f7), multimodal (8 — f13) and
4.1 Benchmark functions and parameter settings fixed dimensional multimodal (f14—f23) benchmark func-

tions are presented respectively. dim denotes the dimen-
In this section to analyze the performance of the IGWO  sion of the problems, Range refers the range of the deci-
algorithm, we select 23 well known and classical bench- sion variables and f,,;, refers optimal value of the problem.
mark functions which are presented in Tables 1, 2 and 3.  These benchmark functions have been utilized by many
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researchers to evalute their algorithms (Mirjalili 2015a;
Heidari et al. 2019; Mirjalili 2015c; Mirjalili and Lewis
2016; Bansal et al. 2018) and represent wide variety of prob-
lems. Numerical results on these problems using IGWO are
obtained and compared with recent variants of GWO apart
from the classical GWO and other popular swarm intel-
ligence based state—of-the—art optimization algorithms.
Recent variants of GWO are Random Walk Grey Wolf
Optimizer(RW-GWO) (Gupta and Deep 2019), Modified
Grey Wolf Optimizer(MGWO) (Mittal et al. 2016), Oppo-
sition based Grey Wolf Optimizer(OGWO) (Pradhan et al.
2017), and swarm intelligence based state—of-the—art opti-
mization algorithms are the GWO (Mirjalili et al. 2014),
ABC (Karaboga 2005), BBO (Simon 2008) and Covariance
Matrix Adaption Evolution Strategy (CMA-ES) (Hansen
2006a) and other well established algorithms used for com-
parison. For all algorithms, we set the same swarm size and
same maximum number of iterations for a fair comparison.
The swarm size and the maximum number of iterations are
set to 50 and 1000 respectively. Each algorithm is run 30
times independently and the results recorded.

4.1.1 Comparison of IGWO algorithm with classical GWO
and its variants

In this subsection, the numerical results obtained by the

classical GWO, RW-GWO, MGWO, OGWO and the pro-
posed IGWO algorithms are recorded and presented in

Table 3 Fixed-dimensional multimodal benchmark functions

Tables 4, 5 and 6. In these tables, “Mean’ denotes the aver-
age of best values (alpha score), “Best” refers to the alpha
score, “Worst” means the function value at worst solution,
“Median” represents the median value of alpha scores
and “SD” denotes the standard deviation of alpha values
recorded over 30 independent runs. The best results for each
test function are highlighted with boldface in Tables 4, 5
and 6.

4.1.2 Comparison in terms of exploitation and exploration

In stochastic meta-heuristic algorithms, the exploitation
ability and convergence rate can be determine by unimodal
benchmark functions. In these functions, only one optima is
present which is known as global optima. From Table 4 it is
clear that IGWO algorithm obtains optimal value and close
to optimal value. Hence it can be concluded that the IGWO
algorithm is better than RW-GWO, M-GWO, OGWO and
GWO in terms of unimodal problems (f1—f7).

Multimodal benchmark functions (scalable and non-
scalable multimodal functions) are suitable to evaluate the
exploration ability of a meta-heuristic algorithm. These
benchmark functions have more than one local optima that
make them hard to be tackled. The results on these problems
given in Table 5 also demonstrate that the search agents in
the IGWO are able to explore the promising domains of the
search space. In the problems f8, 9,11, f14—f18, f20—f23
the IGWO has achieved optimal value (alpha score) while

Benchmark Name dim Range Jnin
Shekel’s Foxholes function ' 55 . -1 2 [—65,65] 0.998
f14(x)=<—+ -_1ﬁ>
300 =X (nimay)
Kowalik’s function . X (B2+bx) 12 4 [-5,5] 0.00030
F1500 = ZL o - 2]
Six-hump camel-back function f16(x) = 4xf - 2.1)5‘11 + %xfl’ + XXy — 4x§ + 4x‘2‘ 2 [-5,5] - 1.0316
; ; 2 —
Branin function F1700) = (x2 B %xf + ,5‘,)‘1 3 6) + 10(1 B $> cosx, + 10 2 [-5,5] 0.398
Goldstein-Price function F18(x) = [1 + (x4 + 1)2(19 ~ ldx, + 3xf — 1dx, + 6x,%, + 3x§)] 2 [-2,2] 3
[30 + (26, = 31, (18 = 32x, + 122 + 48x, — 36x,x, + 27x§)]
’ ily functi X 2 -
Hartman’s family function 190 = — Zj;l ¢ exp (_ Z;=1 a (xj _pij) ) 3 [1,3] 3.86
’ i i 2 -
Hartman’s family function £20(x) = — Z?:l c; exp (— 2;;1 a;(x = ng) ) 6 [0,1] 3.32
hekel’s family f i -1 4 1 —10.1532
Shekel’s family function f21(x)=—2f=1 [(X—ai)(X—a,-)T+c,-] [0, 10] 0.153
Shekel’s family functi -1 4 0,10 — 10.4028
ekel’s family function f22(x)=—217:1 [(X—a,—)(X—a,-)T+c,-] [0, 10]
Shekel’s family function 4 [0.10] —10.5363

2300 = -3 [ —a(x—a)” +c|
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the OGWO has obtained the optimal value (a score) for
f9,f11,f14—f18,f20—f23 and also RW-GWO, MGWO
and GWO have obtained optimal value (alpha score) for
f14—f18,f20—f23. But in the problems f8—f14, f17, f19,
and f21—£23, the IGWO perform better in terms of mean,
best, worst, median and standard deviation and in /16, f18
and 20, the IGWO is better in terms of mean, best, worst,
median. In f16 the classical GWO performed better in terms
of mean, best, worst, median and standard deviation and
in f18, OGWO is better. Thus, the overall comparison of
numerical results based on mean, best, worst, median and
standard deviation of the alpha values in 30 independent
runs verifies that the proposed IGWO is a better optimizer
than the classical GWO, RW-GWO, MGWO and OGWO.

More statistical analysis of these results is reported in
Sect. 4.1.5.

4.1.3 Diversity analysis

In this sub-section, the exploration and exploitation abilities
of the proposed IGWO are measured. Obviously this can
be measured in terms of loss of diversity during the search
process. In order to check, how the swarm diversity varies
with iterations in the IGWO search process. In intermediate
iterations, the difference between every pair of the solutions
is calculated maximum and minimum differences for a few
representative functions are recorded in Table 7. The diver-
sity curves for maximum distance and minimum distance

Table 4 Mean, best, worst ,

) 7 Function Algorithms Mean Best Worst Median SD
median and standard deviation
(SD) of alpha values obtained f RW-GWO 1.36E—74 1.05E-76 1.36E-73 3.75E-75 2.83E-74
in 30 runs on unimodal test MGWO 142E-99  120E-102  159E-98  2.19E—100  3.01E—99
problems by the variants of
GWO and IGWO OGWO 131E-156  1.39E-165  3.59E—155  3.38E-161  6.56E-156
GWO 8.83E—77 1.19E-79 2.00E-75 8.46E—78 3.63E-76
IGWO 0 0 0 0 0
) RW-GWO 3.25E—43 1.96E—44 1.44B-42 1.70B-43 3.82E—43
MGWO 4.76E-57 1.66E—58 2.85E-56 1.48E-57 7.45E-57
OGWO 5.90E—93 6.84E—96 5.96E-92 8.66E—94 1.25B-92
GWO 5.45E—45 1.16E—45 1.98E-44 4.76E-45 4.39E-45
IGWO 0 0 0 0 0
B RW-GWO 3.04E-12 1.07E-15 3.08E—11 4.28E-13 7.72E-12
MGWO 3.27E-20 4.70E-27 6.83E—19 2.30E—23 1.30E-19
OGWO 9.39E—42 4.98B-57 2.39E—40 1.07E—46 4.37E-41
GWO 7.54E—18 1.73E-24 1.61E-16 1.79E—19 2.93E-17
IGWO 0 0 0 0 0
e RW-GWO 7.65E—14 1.15E-15 3.51E-13 5.10E-14 8.14E—14
MGWO 6.32E—23 7.48E-25 1.26E-21 6.88E—24 2.28E-22
OGWO 3.34E—58 2.60E—61 3.41E-57 2.52E-59 7.69E—58
GWO 1.83B-16 6.12E—18 1.77E-15 6.76E—17 3.49E—-16
IGWO 0 0 0 0 0
A RW-GWO 2.59E+01 2.50E+01 2.71E+01 2.61E+01 5.05E-01
MGWO 2.65E+01 2.53E+01 2.79E+01 2.62E+01 6.77E—01
OGWO 2.73E+01 2.72E+01 2.87E+01 2.72E+01 3.16E-01
GWO 2.63E+01 2.51E+01 2.79E+01 2.62E+01 7.17E-01
IGWO 2.38E—02 8.20E—03 6.63E—02 2.15E-02 1.35E—02
16 RW-GWO 2.84E-02 3.09E—06 2.50E—01 7.70E-06 7.20E—02
MGWO 4.12E-01 1.62E-05 1.01E+00 4.48E-01 2.77E-01
OGWO 4.50E—01 3.69E—06 1.00E-+00 5.00E—01 2.40E-01
GWO 2.97E-01 4.55E-06 7.53E-01 2.51E-01 2.45E-01
IGWO 7.35E—06 3.02E—06 1.68E—05 5.88E—06 4.11E-06
1 RW-GWO 1.01E-03 4.08B—04 1.89E—03 9.93E—04 4.07B-04
MGWO 4.53B-04 1.02E-04 1.20E-03 3.30E—04 3.05E—04
OGWO 1.02E-02 2.80E—04 3.53E-02 7.89E—03 8.63E—03
GWO 6.24E—04 1.98B—-04 1.17E-03 6.03E—04 2.41E-04
IGWO 1.15E—04 7.54E—06 3.85E—04 1.20E—04 8.38E—05

Best results are highlighted in bold

@ Springer



J.C.Bansal, S. Singh

Table 5 Mean, best, worst,

) o Function Algorithms Mean Best Worst Median SD
median and standard deviation
(SD) of alpha values obtained 3 RW-GWO  —8.82E+03  -1.00E+04  —7.59E+03  —8.82E+03  5.32E+02
;‘; jbolgr‘;‘;sb"y“ﬂ‘;“g’iﬁzlgfs‘ MGWO _5.53E403 —828E403  —3.15E403  —6.04E+03  1.57E+03
GWO and IGWO OGWO —7.11E+02  —838E+02  —4.19E+02  —8.38E+02  1.83E+02
GWO — 647B+03  —8.53E+03  —3.76E+03  —6.62E+03  1.02E+03
IGWO -126E+04  —126E+04 —126E+04 —1.26E+04 2.06E—01
o) RW-GWO  9.36E+00 0 2.17E+01 8.42E+00 5.81E+00
MGWO 1.98E+00 0 4.21E+01 0 7.79E+00
OGWO 0 0 0 0 0
GWO 4.30E+00 0 1.36E+01 2.84E—14 5.06E+00
IGWO 0 0 0 0 0
110 RW-GWO  7.99E-15 7.99E—15 7.99E—15 7.99E—15 0
MGWO 6.34E—15 4.44E-15 7.99E—15 7.99E—15 1.80E—15
OGWO 8.88E—16 8.88E—16 8.88E—16 8.88E—16 0
GWO 7.99E—15 7.99E—15 7.99E—15 7.99E-15 0
IGWO 8.88E—16 8.88E—16 8.88E—16 8.88E—16 0
11 RW-GWO  4.20E-03 0 3.08E—02 0 7.99E—03
MGWO 2.99E—04 0 9.00E—03 0 1.60E—03
OGWO 0 0 0 0 0
GWO 3.16E—03 0 2.31E—02 0 6.23E—03
IGWO 0 0 0 0 0
112 RW-GWO  3.89E-03 5.60E—07 1.43E-02 3.04E-03 4.24B-03
MGWO 2.03E-02 2.34E—06 4.73B-02 1.98E-02 1.03E-02
OGWO 8.20E—02 5.89E—02 1.24E-01 7.85E-02 1.22E-02
GWO 2.17E-02 6.26E—03 6.20E—02 1.96E—02 1.35E-02
IGWO 9.57E—07 4.68E—07 1.71E—06 9.08E—07 3.07E—07
f3 RW-GWO  4.17E-02 7.38E-06 1.83E-01 2.78E-05 5.68E—02
MGWO 2.92E-01 3.03E-05 6.26E—01 2.98E-01 1.90E-01
OGWO 4.51E-01 1.11E-01 9.25E-01 4.17E-01 2.23E-01
GWO 2.97E-01 8.51E—06 8.01E—01 247E-01 1.98E—01
IGWO 1.40E—05 7.05E—06 2.51E—05 1.24E—05 5.10E—06

Best results are highlighted in bold

are shown in Figs. 2 and 3. In these figures, the iterations of
an algorithm are shown on x-axis and the distance between
search agents is shown on the y-axis. Figure 2a—f denotes
maximum distance graph for f1, f4, 18, 10, f15 and f22 and
the diversity curves for minimum distance are shown in
Fig. 3. Figure 3a—f represents minimum distance graph for
f1, 14,18, f10, 15 and f22. The diversity curves for unimodal
problems show that the whole population in the IGWO algo-
rithm converges as the maximum and minimum distance
between the wolves is close to zero. Also, the distance in
the IGWO algorithm is less than that of GWO, which shows
a better convergence rate of the proposed algorithm than
the convergence rate of GWO. For the scalable multimodal
problems and fixed dimensional multimodal problems, the
maximum diversity curves show that the proposed algorithm
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allows more exploration than the GWO while the minimum
diversity curves show that the wolves in the proposed algo-
rithm start to converge better than GWO.

4.1.4 Convergence analysis

To investigate the convergence speed of the proposed algo-
rithm IGWO is compared with GWO and other GWO vari-
ants like RW-GWO, MGWO, and OGWO under 6 selected
classical benchmark functions as shown in Fig. 4. The
selected functions for convergence curves are f1, f4, f8, f10,
f15 and f22. In these functions, the first 2 are unimodal,
and the remaining are multimodal and fixed dimensional
multimodal functions. The convergence curves are plotted
between iterations and the best value (alpha score) in the
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Table 6 Mean, best, worst,
median and standard deviation
(SD) of alpha values obtained
in 30 runs on fixed dimensional
test problems by the variants of
GWO and IGWO

Function  Algorithms Mean Best Worst Median SD
f14 RW-GWO 9.98E—01 9.98E—01 9.98E—01 9.98E—01 8.60E—12
MGWO 3.67E+00 9.98E—01 1.08E+01 9.98E—01 4.05E+00
OGWO 5.12E+00 2.98E+00 1.27E+01 2.98E+00 3.62E+00
GWO 3.80E+00 9.98E—01 1.27E+01 9.98E—01 4.45E+00
IGWO 9.98E—01 9.98E—01 9.98E—01 9.98E—01 3.94E—-12
f15 RW-GWO 1.03E—-03 3.07E—-04 2.04E—-02 3.07E—-04 3.66E—03
MGWO 3.10E-03 3.07E—04 2.04E—-02 3.08E—04 6.90E—03
OGWO 3.86E—04 3.07E—04 1.22E—-03 3.08E-04 1.72E—-04
GWO 3.04E-03 3.07E—04 2.04E-02 3.07E—04 6.91E—-03
IGWO 1.10E-03 3.07E—04 2.04E-02 3.07E—04 3.70E—-03
f16 RW-GWO —1.03E+00 —1.03E+00 —1.03E+00 —1.03E4+00 1.23E-09
MGWO —1.03E+00 —1.03E+00 —1.03E+00 —1.03E4+00 5.66E—09
OGWO — 7.19E-01 — 1.03E+00  —1.55E-09 - 1.01E4+00  4.18E-01
GWO —1.03E4+00 —1.03E+00 —1.03E+00 —1.03E4+00 1.88E—09
IGWO —1.03E4+00 —1.03E+00 —1.03E4+00 —1.03E4+00 3.53E-05
A7 RW-GWO 3.98E—01 3.98E—01 3.98E—01 3.98E—01 5.08E—-08
MGWO 3.98E—01 3.98E—01 3.98E—01 3.98E—01 1.67E—-07
OGWO 3.98E—01 3.98E—01 3.98E—01 3.98E—01 1.29E—07
GWO 3.98E—01 3.98E—01 3.98E—01 3.98E—01 3.40E—-08
IGWO 3.98E—01 3.98E—01 3.98E—01 3.98E—01 1.94E—-08
f18 RW-GWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 9.16E-07
MGWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 2.62E—06
OGWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 1.37E—-07
GWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.37E-06
IGWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.02E-06
f19 RW-GWO —3.00E-01 —-3.00E-01 —3.00E—01 —3.00E-01 2.26E—16
MGWO —-3.01E-01 -3.01E-01 -3.01E-01 -3.01E-01 2.26E—16
OGWO —3.00E-01 —3.00E-01 —3.00E-01 -—3.00E-01 2.26E—16
GWO —3.00E-01 —3.00E-01 —3.00E-01 —3.00E-01 2.26E—-16
IGWO —3.01E-01 -3.01E-01 -3.01E-01 -3.01E-01 2.26E-16
120 RW-GWO —3.25E+00 —332E+00 —3.20E+00 —3.20E+00  5.91E—02
MGWO —3.22E+00 —332E+00 —3.13E+00 —3.20E4+00  6.95E-02
OGWO —3.16E+00  —3.32E+00 —3.09E+00 —3.14E4+00  9.27E-02
GWO —3.23E+00 —332E+00 —3.13E+00 —3.20E4+00  6.78E-02
IGWO —3.26E+00 —332E+00 —3.14E+00 —3.26E+00 7.05SE-02
21 RW-GWO -9.31E4+00 —1.02E4+01  —-506E+00 —1.02E+01  1.92E4+00
MGWO -9.81E4+00 —1.02E4+01  —5.06E+00 —1.02E+01  1.29E+00
OGWO -9.81E+00 —1.02E+01  —5.06E+00 —1.02E+01  1.29E4+00
GWO -9.98E+00 —1.02E+01 —5.10E4+00 —1.02E+01  9.22E-01
IGWO —1.02E+01 —-1.02E+01 —1.02E+01 —1.02E+01 3.67E—05
22 RW-GWO — 1.02E+01 —1.04E4+01 —5.09E+00 —1.04E+01 9.70E-01
MGWO — 1.02E+401 —1.04E+01 —5.09E+00 —1.04E+01 9.70E-01
OGWO — 1.00E+01 —1.04E4+01 —-509E+00 —1.04E4+01  1.35E400
GWO — 1.02E+01 —1.04E401 —-5.09E+00 —1.04E401 9.70E-01
IGWO —1.04E4+01 —-1.04E4+01 —1.04E+01 —1.04E+01 5.13E—05
123 RW-GWO —1.05E+01 —-1.05E+01 —1.05E+01 —1.05E+01 6.82E—05
MGWO —1.05E+01 —-1.05E+01 -—1.05E+01 —1.05E+01 1.79E—-04
OGWO — 1.05SE+01 —1.05E+01 -1.05E+01 —1.05E+01 6.01E-05
GWO — 1.04E+01 —1.05E+01 —-5.13E4+00 —1.05E4+01 9.87E-01
IGWO —1.05E4+01 —-1.05E4+01 —1.05E+01 —1.05E4+01 5.04E—05

Best results are highlighted in bold
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Table 7 Iteration wise maximum and minimum difference between solutions

fl 4

GWO IGWO GWO IGWO
Iteration Min Max Min Max Min Max Min Max
0 2.68E+02 5.71E+02 2.68E+02 5.71E+02 2.93E+02 5.82E+02 2.93E+02 5.82E+02
100 4.34E-05 1.73E-04 1.38E—13 5.85E—12 4.17E-02 1.66E—-01 8.18E—-11 2.98E—-09
200 4.69E—13 1.78E—12 7.92E-32 4.00E-30 1.62E-06 6.31E-06 4.72E-26 3.24E-24
300 3.89E-21 1.14E-20 6.28E—54 6.20E-53 7.04E-10 1.93E-09 4.08E—46 7.20E—44
400 1.19E-27 3.44E-27 5.98E—82 1.52E-80 2.36E—12 7.36E—12 1.46E—68 7.92E—-68
500 4.02E-32 1.17E-31 2.06E—114 7.16E—113 4.33E-14 1.27E-13 1.16E-99 4.23E-98
600 1.93E-35 5.35E-35 2.12E-152 1.69E—151 1.31E-15 343E-15 4.96E—135 2.88E—134
700 8.63E-38 2.13E-37 0 3.14E-162 1.95E—16 4.60E—-16 0 0
800 1.67E-39 3.99E-39 0 3.14E-162 4.10E-17 9.61E-17 0 0
900 9.68E—41 2.24E—40 0 3.85E—-162 1.06E—-17 2.45E-17 0 0
1000 5.26E—-43 1.16E—42 0 3.14E-162 8.09E-20 1.98E—19 0 0

8 f10

GWO IGWO GWO IGWO
Iteration Min Max Min Max Min Max Min Max
0 1.51E+403 2.99E+03 1.51E+03 2.99E+03 9.50E+01 1.85E+02 9.50E+01 1.85E+02
100 4.63E4+02 1.34E+03 7.53E+01 5.18E4+03 2.52E-05 1.05E-04 4.36E—13 9.14E-12
200 3.36E+02 1.12E4+03 2.01E+01 5.48E+03 1.79E-13 5.72E-13 1.43E-16 5.99E-15
300 3.12E+02 8.91E+02 0 5.26E+03 2.89E—15 1.09E-14 2.23E-17 1.09E-15
400 2.63E+02 8.07E+02 5.65E+01 5.01E+03 2.86E—15 7.67E—15 1.18E—17 7.33E-16
500 1.93E+02 5.51E+02 0 5.14E+03 2.31E-15 7.16E—15 5.88E—18 4.89E-16
600 1.59E+02 4.98E+02 2.78E+401 4.77E4+03 1.92E-15 4.90E-15 2.45E—18 7.43E-16
700 7.77E+01 3.89E+02 1.69E+02 4.73E4+03 1.32E-15 4.32E-15 1.75E-18 1.68E—15
800 7.27E+01 2.44E+02 1.55E+02 4.69E+03 8.93E-16 2.65E—15 1.25E-18 3.40E-15
900 4.00E+01 1.18E+02 3.68E+01 4.67E+03 3.72E-16 1.18E-15 1.80E—19 1.32E-15
1000 3.63E-01 1.09E+00 7.59E-01 4.61E+03 4.31E-18 1.24E-17 4.08E-21 1.07E-15

f15 22

GWO IGWO GWO IGWO
Iteration Min Max Min Max Min Max Min Max
0 6.76E—01 1.48E+01 6.76E—01 1.48E+01 6.69E—-01 1.43E+01 6.69E—01 1.43E+01
100 9.46E—02 5.37E+400 1.10E-01 1.16E+01 6.22E—01 1.09E+01 0 1.82E+01
200 3.28E—02 2.57TE+4+00 6.05E—-02 5.52E+00 5.98E-01 9.03E+00 0 1.67E+01
300 3.57E-02 1.33E4+00 2.53E-02 1.16E+00 4.50E-01 7.46E+00 0 1.51E+01
400 1.85E—02 2.97E-01 1.48E-02 1.03E+00 2.68E-01 5.61E+00 3.80E—02 7.30E+00
500 1.63E-02 2.04E-01 1.10E-02 7.76E-01 3.73E-01 6.09E+00 2.83E-01 6.39E4+00
600 8.70E-03 1.83E-01 5.10E-03 7.67E-01 1.83E-01 4.20E+00 2.74E-01 5.67E4+00
700 4.70E-03 1.19E-01 5.40E-03 6.73E—01 1.74E-01 2.80E+00 1.69E-01 5.05E+00
800 5.00E-03 9.51E-02 3.90E-03 6.89E—01 1.42E-01 2.28E+00 1.33E-01 4.74E+00
900 2.80E-03 3.59E-02 8.72E—-04 6.57E—01 6.73E—02 1.10E4-00 6.32E—02 4.49E+00
1000 2.60E-05 3.37E-04 2.46E—05 6.57E-01 4.40E-04 8.40E—-03 6.68E—04 4.00E+00
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Table 8 p-values obtained by the Friedman test with IGWO

TP p value TP p-value TP p value

b 2.20E-16 9 2.20E-16 7 1

12 2.20E-16 10 2.20E-16 /18 1

3 2.20E-16 11 2.20E-16 /19 1

fa 2.20E-16 f12 2.20E-16 120 1.30E-07
VAl 2.20E-16 f13 2.20E-16 21 2.19E-10
fo 2.20E-16 f14 2.46E—-14 22 8.19E-12
f7 2.20E-16 5 9.83E-05 23 1.88E—09
/3 2.20E-16 f16 2.32E-13

Table 9 p values obtained by the Bonferroni test with IGWO

TP RW-GWO MGWO OGWO GWO
1 2.00E—16 2.00E-16 2.00E-16 2.00E-16
) 2.00E—16 2.00E—16 2.00E-16 2.00E—16
B 2.00E—16 2.00E—16 2.00E—16 2.00E-16
f 2.00E—16 2.00E—16 2.00E—16 2.00E—16
s 2.00E—16 2.00E—16 2.00E—16 2.00E—16
fo 4.70E-03 2.20E-16 2.20E-16 2.20E-16
Yid 2.00E—16 2.00E—16 2.00E—16 2.00E—16
b 2.00E—16 2.00E—16 2.00E—16 2.00E—16
e 2.00E—16 7.80E—03 1 2.20E-16
110 2.20E-16 2.20E-16 1 2.20E-16
f1 6.30E—16 1 1 1.30E—04
112 7.20E—10 2.20E-16 2.20E-16 2.20E-16
113 4.30E-05 2.20E-16 2.20E-16 2.20E-16
114 1 2.20E-16 2.20E-16 2.20E-16
115 7.84E—02 4.30E—04 2.30E—14 1

116 4.40E—06 4.40E—06 2.20E-16 4.40E—06
17 1 1 1 1

118 1 1 1 1

119 1 1 1 1

10 1 8.20E—03 2.20E—16 2.80E—02
P1 2.20E-16 2.20E-16 2.20E-16 1.50E—13
m 4.00E—14 2.20E-16 7.20E—10 4.00E—12
73 2.90E—05 2.20E-16 2.70E—09 8.50E—07

intermediate iterations. In the curves, the iterations of an
algorithm are shown on the horizontal axis and the objec-
tive function value is shown on the vertical axis. Figure 4a—f
are convergence curve for f1, f4, 8, 10, f15 and f22. From
the convergence curves, it can be easily observed that in
terms of convergence rate, the IGWO algorithm perform

@ Springer

well as compared to RW-GWO, MGWO, OGWO and GWO
algorithms.

4.1.5 Statistical analysis

In this sub-section, the Friedman test is used to compare the
performance of all considered algorithms simultaneously
which is a two-stage method (the statistical Friedman test
and then a post-hoc test). A two-stage method is used to
check whether the results obtained by the considered algo-
rithms are significantly different from each other or not.
This non-parametric statistical test is performed pairwise
at 1% level of significance with the null hypothesis, ‘There
is no significant difference between the results obtained
by the considered pair’. After using the Friedman test, we
need post-hoc statistical analysis. Some post-hoc statistical
test is: Bonferroni, Holm- Bonferroni, Hochberg, Hommel,
Benjamin-Hochberg (BH), and Fdr. In this paper, for pair-
wise comparisons, we also reported the adjusted p values
achieved by the Bonferroni procedure. The Friedman test
and the Bonferroni procedure are implemented in R (pohlert-
2014pairwise; ripley2001r). The p values obtained by Fried-
man test and Bonferroni procedure are presented in Table 8
and Table 9 respectively. In these tables, 1 denotes that the
IGWO algorithm is significantly same as the GWO, RW-
GWO, MGWO, and OGWO. From the statistical conclu-
sions, it can be seen that the proposed IGWO is significantly
outperforming the classical GWO, RW-GWO, MGWO, and
OGWO.

4.2 Comparison with well-known metaheuristic
algorithms

In this section, the performance of the proposed IGWO algo-
rithm is compared with some other popular state—of-the—art
meta-heuristic algorithms. Same benchmark set (Tables 1, 2
and 3) is used. ABC (Karaboga 2005), BBO (Simon 2008)
and CMA-ES (Hansen 2006b) are compared with IGWO.
The parameter settings of algorithms are the same as used in
their original papers. For a fair comparison, the same popu-
lation size and same the maximum number of iterations are
kept same. 30 runs are considered, The comparison results
between IGWO and metaheuristic algorithms are shown in
the Tables 10, 11 and 12. In these tables, mean, best value,
worst value, median and standard devitation are presented.

In Table 10, IGWO is able to provide better results for
f1=f5, and f7 except for f6. In f6, CMA-ES has better
results compared to ABC, BBO, and IGWO. In Table 11
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Table 10 Mean, best, worst,

) o Function Algorithms Mean Best Worst Median SD
median and standard deviation
(SD) of alpha values obtained f1 ABC 1.69E—11 3.53E-12  9.03B-11 1.22E-11 1.72E-11
;‘; jl?lé;‘fb"y“tﬁ:‘gﬁfia;;f:é BBO 583E4+00  255E400  124E+01  S3IE4+00  2.46E+00
metaheuristic algorithms and CMA-ES 2.36E—54 2.54E-56 3.42E-53 6.66E—55 6.38E—54
IGWO IGWO 0 0 0 0 0
f2 ABC 7.87E—07 2.04E—07 1.47E—06 7.85E—07 2.80E—-07
BBO 8.82E—01 6.40E—01 1.29E+00 8.67E—01 1.63E—01
CMA-ES 2.06E—25 2.98E-26 7.85E-25 1.32E-25 1.85E—25
IGWO 0 0 0 0 0
f3 ABC 1.24E+04 8.63E+03 1.56E+04 1.23E+04 2.03E+03
BBO 9.02E+03 3.73E+03 1.37E+04 8.93E+03 2.11E+03
CMA-ES 6.52E—44 5.45E—46 3.69E—43 2.85E—44 8.81E—44
IGWO 0 0 0 0 0
4 ABC 2.11E+01 1.40E+01 2.80E+01 2.12E+01 3.77E+00
BBO 6.52E+00 471E+00 8.31E+00 6.46E+00 1.04E+00
CMA-ES 2.44E-20 1.99E-21 2.10E—19 1.31E-20 3.88E—20
IGWO 0 0 0 0 0
f5 ABC 1.56E+00 5.83E—02 6.28E+00 7.65E-01 1.74E+00
BBO 4.11E+02 1.62E+02 2.23E+03 3.22E+02 3.90E+02
CMA-ES 5.52E+00 3.72E+00 7.89E+00 5.30E+00 8.58E—01
IGWO 2.38E—02 8.20E—03 6.63E—02 2.15E—02 1.35E—02
f6 ABC 1.26E—11 1.54E—12 4.14E-11 1.04E—11 9.59E—12
BBO 6.18E+00 1.38E+00 1.07E+01 6.09E+00 2.50E+00
CMA-ES 1.18E—30 4.53E-31 2.50E—30 1.18E—30 4.34E-31
IGWO 7.35E-06 3.02E-06 1.68E—05 5.88E—06 4.11E-06
f7 ABC 1.11E—01 6.53E—02 1.69E—01 1.13E-01 2.62E—02
BBO 2.27E-02 8.40E—03 4.28E—02 2.21E-02 8.10E—03
CMA-ES 5.31E-02 1.75E—02 1.12E-01 5.05E—02 2.32E-02
IGWO 1.15E—04 7.54E—06 3.85E—04 1.20E—04 8.38E—05

Best results are highlighted in bold

for f8—f10, the proposed IGWO algorithm is better in
terms of mean, best, worst, median and standard deviation
while in the problems f12 and f13, CMA-ES found better as
compare to the IGWO, ABC, and BBO. For f11, the IGWO
and the CMA-ES perform better than ABC and BBO algo-
rithm. For functions f14—f23, the IGWO outperforms for
f19 and f23. For f14, f16, f17, f18, 21 and f22, the IGWO
is the second best compared to the ABC, BBO and CMA-
ES algorithm. For f14, f17, f19, 21, and f22, ABC perform

better than BBO, CMA-ES and IGWO. For f15, f16 and f18,
the CMA-ES provides better results than ABC, BBO and
IGWO. Furthermore, the convergence speed comparison of
proposed IGWO and other metaheuristic algorithms can be
seen through convergence curves. The convergence curves
are plotted in Fig. 5 by considering the best value on the
vertical axis and iterations on horizontal axis. Figure Sa—f
are convergence curves for f1, f4, f8, f10, f15 and f22. It
can be observed from the convergence curves that IGWO
has the fastest convergence rate as compared to ABC, BBO,
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Table 11 Mean, best, worst,

) o Function Algorithms Mean Best Worst Median SD
median and standard deviation
(SD) of alpha values obtained f8 ABC —1.22E+04  —126E+04 - L.I9E+04  — 1.22E+04  1.33E+02
o jl?l;;l‘;sb"y“ti“igi?gjﬁe‘(‘f‘ BBO _126E+04 —126E+04 — 125E+04  — 1.26E4+04  5.22E400
metaheuristic algorithms and CMA-ES — 1.18E+02 — 1.18E+02 — 1.18E+02 — 1.18E+02 4.66E—14
IGWO IGWO —1.26E+04 —1.26E+04 —1.26E+04 —1.26E+04 2.06E-01
9 ABC 3.43E-01 2.64E-08 1.99E+00 1.16E-04 5.57E-01
BBO 2.51E+00 1.18E+00 4.76E+00 2.55E+00 9.01E-01
CMA-ES 1.48E+01 7.96E+00 1.99E+01 1.39E+01 2.86E+00
IGWO 0 0 0 0 0
f10 ABC 1.53E-05 2.05E-06 6.26E—-05 1.08E-05 1.27E-05
BBO 1.25E+00 8.49E-01 2.10E+00 1.18E+00 2.92E-01
CMA-ES 6.10E—15 4.44E—-15 7.99E—-15 4.44E—-15 1.80E—-15
IGWO 8.88E—16 8.88E—16 8.88E—16 8.88E—16 0
f11 ABC 1.50E—03 6.17E—11 1.48E-02 2.18E-08 3.68E-03
BBO 1.06E+00 1.00E+00 1.14E+00 1.05E+00 3.04E-02
CMA-ES 0 0 0 0 0
IGWO 0 0 0 0 0
f12 ABC 3.90E—-12 3.67E—-14 8.84E-11 5.45E—-13 1.60E—11
BBO 4.49E—-02 6.70E—03 1.41E-01 2.30E-02 4.23E—02
CMA-ES 5.51E-31 2.63E-31 9.53E-31 5.57E-31 1.63E-31
IGWO 9.57E-07 4.68E-07 1.71E-06 9.08E-07 3.07E-07
f13 ABC 9.14E-12 6.62E—13 3.82E-11 6.25E—12 8.52E—-12
BBO 2.75E-01 1.29E-01 5.50E-01 2.56E-01 9.34E-02
CMA-ES 5.12E-30 1.20E-30 1.22E-29 4.07E-30 2.80E-30
IGWO 1.40E-05 7.05E-06 2.51E-05 1.24E-05 5.10E-06

Best results are highlighted in bold

and CMA-ES. Additionally, to confirm that the better results
which are obtained through the proposed IGWO are not just
by chance, a non-parametric Friedman test is used. The sta-
tistical conclusions which are drawn by applying the Fried-
man test and Bonferroni procedure between metaheuristic
algorithms and proposed IGWO are presented in Tables 13
and 14. From the statistical analyses, it can be concluded that
the proposed IGWO significantly outperforms algorithms
ABC, BBO and CMA-ES.

5 Conclusion
In the present paper, an improved version of the classical

GWO has been proposed which is based on inclusion of
two strategies. First is the explorative equation and second

@ Springer

is the Opposition-Based Learning. The explorative equation
has helped to enhanced the exploration capability of GWO.
The OBL has helped to prevent the GWO stagnation and
increased the convergence speed. The proposed IGWO has
been evaluated on 23 well-known benchmark problems. The
obtained results are compared with other latest variants of
GWO and other popular meta-heuristics. Statistical analysis
has been carried out and it is found that IGWO is a bet-
ter optimizer which has better exploration capability while
maintaining the high convergence speed. In the future work,
the proposed IGWO can be analyzed on other benchmark
test problems and used to solve several real-life applications
problems.
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Table 12 Mean, best, worst,
median and standard deviation
(SD) of alpha values obtained
in 30 runs on fixed dimension
test problems by the considered
metaheuristic algorithms and
IGWO

Function  Algorithms Mean Best Worst Median STD
f14 ABC 9.98E—01 9.98E—01 9.98E—01 9.98E—01 2.51E—16
BBO 1.00E+00 9.98E—01 1.02E+00 9.98E—01 4.70E-03
CMA-ES 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.51E-13
IGWO 9.98E—01 9.98E—01 9.98E—01 9.98E—01 3.94E-12
f15 ABC 6.46E—04 3.61E-04 8.46E—04 6.58E—04 1.27E-04
BBO 5.70E—-03 7.83E—-04 2.20E—-02 3.10E-03 7.30E-03
CMA-ES 3.29E—-04 3.07E—04 9.62E—04 3.07E—04 1.20E—04
IGWO 1.10E-03 3.07E—04 2.04E—-02 3.07E—04 3.70E—-03
f16 ABC —1.03E+00 —1.03E+00 —1.03E+00 —1.03E+00 4.97E—16
BBO —1.03E+00 —1.03E+00 —1.02E+00 —1.03E+00 2.70E-03
CMA-ES —1.03E+00 —1.03E4+00 —1.03E+00 —1.03E+00 4.97E—16
IGWO —1.03E+00 —1.03E+00 —1.03E+00 —1.03E4+00 3.53E-05
17 ABC 3.98E—01 3.98E—01 3.98E—01 3.98E—01 0
BBO 3.99E—01 3.98E—01 4.07E-01 3.99E—01 2.10E-03
CMA-ES 3.98E-01 3.98E—01 3.98E—01 3.98E—01 5.63E—45
IGWO 3.98E—01 3.98E—01 3.98E—01 3.98E—01 1.94E-08
f18 ABC 3.00E+00 3.00E+00 3.00E+00 3.00E+00 5.77E-04
BBO 6.65E+00 3.00E+00 3.06E+01 3.02E+00 9.40E+00
CMA-ES 3.00E+00 3.00E+00 3.00E+00 3.00E+00 7.37E-15
IGWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.02E—-06
19 ABC —3.00E-01 —-3.00E-01 —3.00E-01 —3.00E-01 2.26E—16
BBO — 2.84E—01 —2.96E-01 — 2.60E-01 — 2.88E-01 9.60E—03
CMA-ES — 1.86E+00  —3.35E-01 —3.86E+00  —3.35E-01 1.78E+00
IGWO —3.01E-01 -3.01E-01 -3.01E-01 -3.01E-01 2.26E-16
20 ABC —3.32E+00 —3.32E4+00 —3.32E+00 —3.32E4+00 1.73E-15
BBO —3.28E4+00  —3.32E+00  —3.20E4+00 —3.32E+00  5.83E-02
CMA-ES — 1.0OOE+00  —3.32E+00 —7.06E-02  — 1.66E—01 1.42E+00
IGWO —3.26E+00  —3.32E+00 —3.14E+00 —3.26E+00  7.05E-02
21 ABC —1.02E+01 -1.02E+01 —1.02E+01 —1.02E+01 2.06E—05
BBO —536E+00 — 1.01E4+01 —2.62E+00  —3.86E4+00  3.27E4+00
CMA-ES —5.06E+00  —S5.06E+00  —S5.06E+00  — 5.06E+00 1.26E-15
IGWO —1.02E+01 -1.02E+01 —1.02E+01 —1.02E+01  3.67E-05
22 ABC —1.04E4+01 —1.04E4+01 —1.04E+01 —1.04E+01 2.19E—09
BBO —7.32E+00  — 1.04E+01 —274E+00  —1.03E+01 3.54E+00
CMA-ES —5.09E+00  —5.09E+00 —5.09E+00 —5.09E4+00  4.01E-15
IGWO —1.04E4+01 —1.04E+01 —1.04E+01 —1.04E+01 1.74E-08
23 ABC —1.05E+01 —1.05E+01 —1.05E+01 —1.05E+01 3.01E-04
BBO —5.50E+00 —1.05E4+01 —1.86E4+00 —3.83E+00  3.61E+00
CMA-ES —5.13E400  —5.13E4+00  —5.13E400  —5.13E4+00  4.47E-15
IGWO —1.05E+01 —-1.05E4+01 —1.05E4+01 —1.05E4+01 5.04E-05

Best results are highlighted in bold
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Table 13 p-values obtained by the Friedman test with IGWO

TP p-value TP p-value TP p-value
b 2.20E-16 9 2.20E-16 7 4.01E-09
12 2.20E-16 10 2.20E-16 /18 2.20E-16
3 2.20E-16 11 2.20E-16 /19 2.20E-16
fa 2.20E-16 f12 2.20E-16 120 1.06E—-08
VAl 2.20E-16 f13 2.20E-16 21 2.20E-16
fo 2.20E-16 f14 2.20E-16 22 1.87E—-14
f7 2.20E-16 f15 3.29E-16 23 3.07E-14
/3 2.20E-16 f16 0.1116

Table 14 p-values obtained by the Bonferroni test with IGWO

TP ABC BBO CMA-ES
/1 2.00E-16 2.00E—-16 2.00E-16
12 2.00E-16 2.00E—-16 2.00E-16
3 2.00E-16 2.00E—-16 2.00E-16
fa 2.00E-16 2.00E—-16 2.00E-16
H 2.00E-16 2.00E—-16 2.00E-16
fo 2.00E-16 2.00E-16 2.00E-16 -
f7 2.00E-16 2.00E-16 2.00E-16
/3 2.00E-16 0.0033 2.00E-16
9 2.00E-16 2.00E-16 2.00E-16
f10 2.20E-16 2.20E-16 2.20E-16
S11 2.00E-16 2.00E-16 1

f12 2.00E-16 2.00E-16 2.00E-16
f13 2.00E-16 2.00E-16 2.00E-16
f14 1 1.30E-06 2.00E-16
f15 2.00E-16 2.00E-16 5.30E-05
f16 1 2.00E-06 1

f17 1 2.00E-06 1

f18 1 2.00E-06 1

f19 1 2.00E-16 2.00E-16
20 7.60E—-15 0.046 2.00E-16
21 1 2.00E-16 2.00E-16
22 1 2.00E-16 2.00E-16
123 1 2.00E-16 2.00E-16
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