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Abstract Artificial Bee Colony (ABC) is a well known
optimization approach to solve nonlinear and complex prob-
lems. It is relatively a simple and recent population based
probabilistic approach for global optimization. Similar to
other population based algorithms, ABC is also computa-
tionally expensive due to its slow nature of search process.
The solution search equation of ABC is significantly influ-
enced by a random quantity which helps in exploration at
the cost of exploitation of the search space. In the solution
search equation of ABC due to the large step size the chance
of skipping the true solution is high. Therefore, in this paper,
to balance the diversity and convergence capability of the
ABC, Lévy Flight random walk based local search strategy is
proposed and incorporated with ABC along with opposition
based learning strategy. The proposed algorithm is named as
Opposition Based Lévy Flight ABC. The experiments over
14 un-biased test problems of different complexities and five
well known engineering optimization problems show that the
proposed algorithm outperforms the basic ABC and its recent
variants namely Gbest guided ABC, Best-So-Far ABC, and
Modified ABC in most of the experiments.
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1 Introduction

Swarm Intelligence has become an emerging and interesting
area in the field of nature inspired techniques that is used
to solve optimization problems during the past decade. It is
based on the collective behavior of social creatures. Swarm
based optimization algorithms find solution by collaborative
trial and error. Social creatures utilize their ability of social
learning to solve complex tasks. Peer to peer learning behav-
ior of social colonies is the main driving force behind the
development of many efficient swarm based optimization
algorithms. Researchers have analyzed such behaviors and
designed algorithms that can be used to solve nonlinear, non-
convex or discrete optimization problems. Previous research
[8,16,22,32] have shown that algorithms based on swarm
intelligence have great potential to find solutions of real world
optimization problems. The algorithms that have emerged
in recent years include ant colony optimization (ACO) [8],
particle swarm optimization (PSO) [16], bacterial foraging
optimization (BFO) [20] etc.

Artificial bee colony (ABC) optimization algorithm intro-
duced by Karaboga [13] is a recent addition in this category.
This algorithm is inspired by the behavior of honey bees
when seeking a quality food source. Like any other popula-
tion based optimization algorithm, ABC consists of a popu-
lation of potential solutions. The potential solutions are food
sources of honey bees. The fitness is determined in terms of
the quality (nectar amount) of the food source. ABC is rela-
tively a simple, fast and population based stochastic search
technique in the field of nature inspired algorithms.

There are two fundamental processes which drive the
swarm to update in ABC: the variation process, which
enables exploring different areas of the search space, and the
selection process, which ensures the exploitation of the pre-
vious experience. However, it has been shown that the ABC
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may occasionally stop proceeding toward the global optimum
even though the population has not converged to a local opti-
mum [14]. It can be observed that the solution search equation
of ABC algorithm is good at exploration but poor at exploita-
tion [38]. Therefore, to maintain the proper balance between
exploration and exploitation behavior of ABC, it is highly
required to develop a local search approach in the basic ABC
to exploit the search region. In past, very few efforts have
been done in this direction. Kang et al. [12] proposed a Hooke
Jeeves Artificial Bee Colony algorithm (HJABC) for numer-
ical optimization. In HJABC, authors incorporated a local
search technique which is based on Hooke Jeeves method
(HJ) [11] with the basic ABC. Further, Mezura-Montes and
Velez-Koeppel [18] introduced a variant of the basic ABC
named Elitist Artificial Bee Colony. In this work, the authors
integrated two local search strategies. The first local search
strategy is used when 30, 40, 50, 60, 70, 80, 90, 95 and 97 %
of function evaluations have been completed. The purpose
of this is to improve the best solution achieved so far by gen-
erating a set of 1000 new food sources in its neighborhood.
The other local search works when 45, 50, 55, 80, 82, 84, 86,
88, 90, 91,92, 93, 94, 95, 96, 97, 98, and 99 % of function
evaluations have been reached.

In this paper, Lévy Flight random walk based local search
strategy is proposed. The proposed local search strategy is
used for finding the global optima of a unimodal and/or multi-
model functions by iteratively reducing the step size to update
the candidate solution in the search space inside which the
optima is known to be exist. Further, to balance the diversity
and convergence capability of ABC, the concept of opposi-
tion based learning (OBL) [31] is taken into consideration.
The same concept has been applied in Differential Evolution
(DE) [22] optimization algorithm to improve its convergence
speed [24]. The main concept behind OBL is the simultane-
ous consideration of a solution and its corresponding opposite
counter part in order to find out a better approximation for
the current candidate solution. The quality of the solution is
measures on the basis of its distance form the global optima.
On the basis of probability theory, it can be easily state that
there is 50 % chance for an opposite counter part solution to
be nearer to the global optima. Therefore, in this paper, the
concept of OBL and the proposed local search strategy are
integrated with the basic ABC. Further, the proposed algo-
rithm is compared by experimenting on 14 un-biased test
problems (i.e. the problems which solutions do not exist on
origin, axes or diagonal) and five popular engineering opti-
mization problems to the basic ABC and its recent variants
named, Gbest guided ABC (G ABC) [38], Best-So-Far ABC
(BSF ABC) [3] and Modified ABC (M ABC) [1].

Rest of the paper is organized as follows: Sect. 2 describes
brief overview of the basic ABC. Lévy Flight local search
strategy is proposed in Sect. 3. In Sect. 4, concept of oppo-
sition based learning is described. Opposition Based Lévy

Flight ABC (OBLFABC) is proposed and tested in Sect. 5.
In Sect. 6, a comprehensive set of experimental results are
provided. Finally, in Sect. 7, paper is concluded.

2 Artificial bee colony (ABC) algorithm

The ABC algorithm is relatively recent swarm intelligence
based algorithm. The algorithm is inspired by the intelli-
gent food foraging behavior of honey bees. In ABC, each
solution of the problem is called food source of honey bees.
The fitness is determined in terms of the quality of the food
source. In ABC, honey bees are classified into three groups
namely employed bees, onlooker bees and scout bees. The
number of employed bees are equal to the onlooker bees.
The employed bees are the bees which searches the food
source and gather the information about the quality of the
food source. Onlooker bees stay in the hive and search
the food sources on the basis of the information gathered
by the employed bees. The scout bee, searches new food
sources randomly in places of the abandoned foods sources.
Similar to the other population-based algorithms, ABC solu-
tion search process is an iterative process. After, initialization
of the ABC parameters and swarm, it requires the repetitive
iterations of the three phases namely employed bee phase,
onlooker bee phase and scout bee phase. Each of the phase
is described as follows:

2.1 Initialization of the swarm

The parameters for the ABC are, number of food sources,
number trials after which a food source is considered to
be abandoned and termination criteria. In the basic ABC,
the number of food sources are equal to the employed
bees or onlooker bees. Initially, a uniformly distributed ini-
tial swarm of SN food sources where each food source
xi (i = 1, 2, . . . , SN ) is a D-dimensional vector, generated.
Here D is a number of variables in the optimization problem
and xi represent the ith food source in the swarm. Each food
source is generated as follows:

xi j = xminj + rand[0, 1](xmax j − xminj ) (1)

where xminj and xmax j are bounds of xi in jth direction and
rand[0, 1] is a uniformly distributed random number in the
range [0, 1]

2.2 Employed bee phase

In employed bee phase, employed bees modify the current
solution (food source) based on the information of individual
experience and the fitness value of the new solution. If the
fitness value of the new solution is higher than that of the
old solution, the bee updates her position with the new one
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and discards the old one. The position update equation for
i th candidate in this phase is

vi j = xi j + φi j (xi j − xk j ) (2)

where k ∈ {1, 2, . . . , SN } and j ∈ {1, 2, . . . , D} are ran-
domly chosen indices. k must be different from i . φi j is a
random number between [−1, 1].

2.3 Onlooker bees phase

After completion of the employed bees phase, the onlooker
bees phase starts. In onlooker bees phase, all the employed
bees share the new fitness information (nectar) of the new
solutions (food sources) and their position information with
the onlooker bees in the hive. Onlooker bees analyze the
available information and select a solution with a probability
probi related to its fitness. The probability probi may be
calculated using following expression (there may be some
other but must be a function of fitness):

probi = f i tnessi
∑SN

i=1 f i tnessi
(3)

where f i tnessi is the fitness value of the solution i . As in the
case of the employed bee, it produces a modification on the
position in its memory and checks the fitness of the candidate
source. If the fitness is higher than that of the previous one,
the bee memorizes the new position and forgets the old one.

2.4 Scout bees phase

If the position of a food source is not updated up to a prede-
termined number of cycles, then the food source is assumed
to be abandoned and scout bees phase starts. In this phase
the bee associated with the abandoned food source becomes
scout bee and the food source is replaced by a randomly
chosen food source within the search space. In ABC, pre-
determined number of cycles is a crucial control parameter
which is called limit for abandonment.

Assume that the abandoned source is xi . The scout bee
replaces this food source by a randomly chosen food source
which is generated as follows

xi j = xminj + rand[0, 1](xmax j − xminj ),

for j ∈ {1, 2, . . . , D} (4)

where xminj and xmax j are bounds of xi in j th direction.

2.5 Main steps of the ABC algorithm

Based on the above explanation, it is clear that there are three
control parameters in ABC search process: The number of
food sources SN (equal to number of onlooker or employed

bees), the value of limit and the maximum number of itera-
tions. The pseudo-code of the ABC is shown in Algorithm 1
[14]:

3 Lévy flight local search

Local search algorithms can be seen as a population based
stochastic algorithms, where main task is to exploit the avail-
able knowledge about a problem. Generally, in local search
algorithms some or all individuals in the population are
improved by some local search method. Local search algo-
rithms are basically designed to incorporate a local search
strategy between iterations of a population based search algo-
rithm. In this way, the population based global search algo-
rithms are hybridized with local search algorithms and the
hybridized algorithms named as memetic algorithms. In
memetic algorithms, the global search capability of the main
algorithm explore the search space, trying to identify the
most promising search space regions while the local search
part scrutinizes the surroundings of some initial solutions,
exploiting it in this way.

In this paper, we are proposing a local search strategy
inspired by Lévy Flight random walk and named Lévy
Flight local search (LFLS). In past, the flight behavior of
many animals and insects has been analyzed in various stud-
ies which exhibit the important properties of Lévy flights
[4,21,25,35]. Further, this flight behavior has been applied to
optimization and search algorithms, and the reported results
show its importance in the field of solution search algo-
rithms [21,25,27,28]. Recently, Xin-She Yang proposed a
new metaheuristic algorithm by combining Lévy flights with
the search strategy via the Firefly Algorithm [36].

The Lévy Flight is a random walk in which the steps are
defined in terms of the step-lengths, which have a certain
probability distribution. The random step lengths are drawn
from a Lévy distribution which is defined in Eq. (5):

L(s) ∼ |s|−1−β, where β(0 < β ≤ 2)

is an index and s is the step length. (5)

In this paper, a Mantegna algorithm [37] for a symmet-
ric Lévy stable distribution is used for generating random
step sizes. Here ‘symmetric’ means that the step size may be
positive or negative.
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In Mantega’s algorithm, the step length s can be calculated
by

s = u

|v|1/β , (6)

where, u and v are drawn from normal distributions. That is

u ∼ N (0, σu
2), v ∼ N (0, σv

2) (7)

where,

σu =
{

�(1 + β)sin(πβ/2)

β�[(1 + β)/2]2(β−1)/2

}1/β

, σv = 1. (8)

This distribution (for s) obeys the expected lévy distribution
for |s| ≥ |s0|, where s0 is the smallest step length [37]. Here
�(.) is the Gamma function and calculated as follows:

�(1 + β) =
∞∫

0

tβe−t dt. (9)

In a special case when β is an integer, then we have
�(1 + β) = β!.

In the proposed strategy, the step sizes are generated using
lévy distribution to exploit the search area and calculated as
follows:

step_si ze(t) = 0.001 × s(t)× SLC, (10)

here t is the iteration counter for local search strategy, s(t)
is calculated using lévy distribution as shown in Eq. (6) and
SLC is the social learning component of the global search
algorithm.

In Levy flights, the step sizes are too aggressive, that is,
they may generate new solutions often outside the domain or
on boundary. Since, the local search algorithms can be seen
as a population based stochastic algorithms, where main task
is to exploit the available knowledge about a problem and
steps sizes play an important role in exploiting the identified
region. Therefore, 0.001 multiplier is used in Eq. (10) to
reduce the step size. The solution update equation of an ith
individual, based on the proposed local search strategy is
given in Eq. (11):

x ′
i j (t + 1) = xi j (t)+ step_si ze(t)× U (0, 1), (11)

here xi j is the individual which is going to modify its position,
U (0, 1) is a uniformly distributed random number between 0
and 1 and step_si ze(t)×U (0, 1) is the actual random walks
or flights drawn from lévy distribution. The pseudo-code of
the proposed LFLS is shown in Algorithm 2. In Algorithm
2, ε determines the termination of local search.

4 Opposition based learning (OBL)

Nature inspired algorithms (NIAs) start searching of the
global optima randomly and all the individual randomly ini-
tialized in the given search space. Further, the individuals
update their positions based on self intelligence and social
learning and move towards the optimum solution or required
solution. NIAs are iterative and stochastic in nature and solu-
tion search process terminates when some predefined criteria
is satisfied. The performance of the algorithms are measured
in terms of computational complexity which is directly pro-
portionate to the number of objective function evaluations
to be optimized. Researchers are continuously working to
improve the performance of NIAs in terms of computa-
tional complexity. Rahnamayan et al. [24] proposed oppo-
sition based differential evolution (OBDE) to improve the
convergence rate of DE which was based on the theory of
opposite-based learning (OBL). The concept of OBL was
introduced by Tizhoosh [31]. The same concept can also be
applied in ABC to improve the convergence speed. If the ran-
domized initialized solutions are near to the global optima
then the required solution can be found in less computational
efforts but if the solutions are very far form the optima then it
takes high computational cost or may be some time infeasi-
ble to track the required solution. As suggested by Tizhoosh
[31] and further by Rahnamayan et al. [24], the computa-
tional cost can be reduced by applying the concept of OBL.
In OBL we consider the better solutions as well as their oppo-
site counter part solutions and combined them, then we apply
greedy approach to find the fittest solutions among them. We
judge the solution on the basis of its fitness in respect to global
optima. Let x be a solution and x̃ is its opposite solution in
the search space. On the basis of probability theory, we can
say that there is 50 % chance that the opposite solution may
be fitter. The concept of OBL can be defined as follows [31]:

Definition 1 (Opposite Number) Let x ∈ � be a real number
defined on a certain interval: x ∈ [a, b]. The opposite number
x̃ is defined as follows

x̃ = a + b − x
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For the higher dimensions, the above definition can be
extended as follows [24,31]:

Definition 2 (Opposite Point) Let P(x1, x2, . . . , xD) be a
point in a D-dimensional coordinate system with x1, . . . ,

xD ∈ � and xi ∈ [ai , bi ]. The opposite point P̃ is completely
defined by its coordinates x1, . . . , xD where

x̃i = ai + bi − xi , i = 1, . . . , D.

On the basis of the Definition 2, an Opposition Based
Optimization Method (O B O M) has been developed [24].
The pseudo code of the O B O M is shown in Algorithm 3:

5 Opposition based lévy flight ABC (OBLFABC)

Exploration and exploitation are the two important char-
acteristics of the population-based optimization algorithms
such as GA [10], PSO [16], DE [29], BFO [20] and so on.
In these optimization algorithms, the exploration refers to
the ability to investigate the various unknown regions in
the solution space to discover the global optimum. While, the
exploitation refers to the ability to apply the knowledge of
the previous good solutions to find better solutions. In prac-
tice, the exploration and exploitation contradict with each
other, and in order to achieve better optimization perfor-
mance, the two abilities should be well balanced. Dervis
Karaboga and Bahriye Akay [14] tested different variants
of ABC for global optimization and found that the ABC
shows poor performance and remains inefficient in explor-
ing the search space. In ABC, any potential solution updates
itself using the information provided by a randomly selected
potential solution within the current swarm. In this process,
a step size which is a linear combination of a random num-
ber φi j ∈ [−1, 1], current solution and a randomly selected
solution are used. Now the quality of the updated solution
highly depends upon this step size. If the step size is too
large, which may occur if the difference of current solution
and randomly selected solution is large with high absolute
value of φi j , then updated solution can surpass the true solu-
tion and if this step size is too small then the convergence
rate of ABC may significantly decrease. A proper balance
of this step size can balance the exploration and exploitation
capability of the ABC simultaneously. But, since this step
size consists of random component so the balance can not be

done manually. Therefore, in this paper, to balance the diver-
sity and convergence ability of ABC, three modifications are
proposed:

1. To enhance the exploitation capability of ABC, Lévy
Flight Local Search (LFLS) is incorporated with the basic
ABC. In this way, the situation of skipping true solution
can be avoided while maintaining the speed of conver-
gence. The LFLS strategy, in case of large step sizes,
can search within the area that is jumped by the basic
ABC.

2. Inspired by the O B DE [24], to balance the diversity
and convergence capability of ABC, the O BL strategy
is incorporated with the basic ABC. This modification
avoids situation of stagnation of the algorithm and speed
up the convergence to global optima.

3. In the basic ABC, the food sources are updated, as shown
in Eq. (2), based on the random step size. Inspired by
PSO [16] and Gbest-guided ABC (GABC) [38] algo-
rithms which, in order to improve the exploitation, take
advantage of the information of the global best solu-
tion to guide the search of candidate solutions, the solu-
tion search equation described by Eq. (2) is modified as
follows [38]:

vi j = xi j + φi j (xi j − xk j )+ ψi j (xbest j − xi j ),

here, ψi j is a uniform random number in [0,C], where
C is a nonnegative constant. For details description refer
to [38].

As described in the proposed first modification, a Lévy
Flight random walk inspired local search is incorporated
with the basic ABC to improve the exploitation capability.
In the proposed local search strategy, step size is calculated
as shown in Eq. (12).

step_si ze(t) = 0.001 × s(t)× (xbest j (t)− xk j (t)), (12)

here, symbols have their usual meanings, SLC = (xbest j −
xk j ) is the social learning component of the ABC algorithm in
which xbest is the best solution in the current swarm and xk is
the randomly selected solution within swarm and xk 	= xbest .
The solution update equation of the best individual within the
current swarm, based on the proposed local search strategy
is given in Eq. (13):

x ′
best j (t + 1) = xbest j (t)+ step_si ze(t)× U (0, 1), (13)

In LFLS, only the best particle of the current swarm
updates itself in its neighborhood. The pseudo-code of the
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proposed Lévy Flight search strategy with ABC is shown in
Algorithm 4 and

In Algorithm 4, ε is the termination criteria of the proposed
local search, pr is a perturbation rate (a number between 0
and 1) which controls the amount of perturbation in the best
solution, U (0, 1) is a uniform distributed random number
between 0 and 1, D is the dimension of the problem and xk

is a randomly selected solution within swarm. See Sect. 6.2
for details of these parameter settings.

Further, the opposition based learning (OBL) strategy,
explained in Sect. 4, is incorporated with the ABC to bal-
ance the diversity and the convergence capability. The OBL
is applied to the current swarm of the ABC after the scout
bee phase in the solution search process on the basis of
probability named as jumping rate ( jr ) [24]. Unlike the
opposition based optimization method (O B O M) explained
in Algorithm 3, opposition based solutions are generated
dynamically. In the O B O M , evolution of opposition based
solutions are in the static range (solution search space).
Therefore, there is a chance to jump outside of the already
shrunken search space and the knowledge of the current
reduced space (converged swarm) would be lost. Hence,
Instead of using predefined search range ([a j , b j ]), the solu-
tions are generated by using current interval in the swarm
which is, as the search does progress, increasingly smaller
than the corresponding initial range. Therefore, in OBOM,
the opposition based solutions are generated using following
equation:

O Pi j = M I NJ
P + M AX j

P − Pi j ,

here, [M I NJ
P ,M AX j

P ] is the current interval in the
swarm.

Therefore, L F L S and O B O M are incorporated with the
basic ABC to speed up the evolutionary process (search
process). The proposed algorithm is named as Opposition
Based Lévy Flight ABC (OBLFABC). Pseudo-code of the
OBLFABC is shown in Algorithm 5:

6 Experimental results and discussion

6.1 Test problems under consideration

In order to analyze the performance of OBLFABC, 14
un-biased different global optimization problems ( f1 to f14)
are selected (listed in Table 1). These are continuous opti-
mization problems and have different degrees of complex-
ity and multimodality. Test problems f1 to f5 and f11 to
f14 are taken from [2] while test problems f6 to f10 are
taken from [30] with the associated offset values. Further, to
see the robustness of the proposed strategy, five well known
engineering optimization problems ( f15 to f19) which are
described as follows, have been solved.

Compression Spring ( f15): The considered first engineering
optimization problem is compression spring problem [19,
26]. This problem minimizes the weight of a compression
spring, subject to constraints of minimum deflection, shear
stress, surge frequency, and limits on outside diameter and on
design variables. There are three design variables: the wire
diameter x1, the mean coil diameter x2, and the number of
active coils x3. This is a simplified version of a more difficult
problem. The mathematical formulation of this problem is:

x1 ∈ {1, . . . , 70} granularity 1

x2 ∈ [0.6; 3]
x3 ∈ [0.207; 0.5] granularity 0.001

and four constraints

g1 := 8C f Fmax x2

πx3
3

− S ≤ 0

g2 := l f − lmax ≤ 0

g3 := σp − σpm ≤ 0

g4 := σw − Fmax − Fp

K
≤ 0

with

C f = 1 + 0.75
x3

x2 − x3
+ 0.615

x3

x2

Fmax = 1,000

S = 189,000
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l f = Fmax

K
+ 1.05(x1 + 2)x3

lmax = 14

σp = Fp

K
σpm = 6

Fp = 300

K = 11.5 × 106 x4
3

8x1x3
2

σw = 1.25

and the function to be minimized is

f15(x) = π2 x2x2
3 (x1 + 2)

4

The best known solution is (7, 1.386599591, 0.292), which
gives the fitness value f ∗ = 2.6254214578. Here, minimum
error is fixed to be 10−10, i.e. a run is said to be successful if
it finds a fitness f so that | f − f ∗| ≤ 10−10 in the maximum
number of function evaluations.

Pressure Vessel design ( f16) The pressure vessel design is
to minimize the total cost of the material, forming, and weld-
ing of a cylindrical vessel [33]. There are four design vari-
ables involved: x1, (Ts , shell thickness), x2 (Th , spherical
head thickness), x3 (R, radius of cylindrical shell), and x4

(L , shell length). The mathematical formulation of this typ-
ical constrained optimization problem is as follows:

f16(x) = 0.6224x1x3x4+1.7781x2x2
3

+3.1611x2
1 x4 + 19.84x2

1 x3

subject to

g1(x) = 0.0193x3 − x1

g2(x) = 0.00954x3 − x2

g3(x) = 750 × 1728 − πx2
3

(

x4 + 4

3
x3

)

The search boundaries for the variables are

1.125 ≤ x1 ≤ 12.5,

0.625 ≤ x2 ≤ 12.5,

1.0 × 10−8 ≤ x3 ≤ 240

and

1.0 × 10−8 ≤ x4 ≤ 240.

The best known global optimum solution is f (1.125, 0.625,
55.8592, 57.7315) = 7197.729 [33]. For a successful run,
the minimum error criteria is fixed to be 1.0E−05 i.e. an
algorithm is considered successful if it finds the error less

than acceptable error in a specified maximum function eval-
uations.

Lennard-Jones ( f17) The function to minimize is a kind of
potential energy of a set of N atoms. The position xi of the
atom i has three coordinates, and therefore the dimension of
the search space is 3N . In practice, the coordinates of a point
x are the concatenation of the ones of the xi . In short, we can
write x = (x1, x2, . . . , xN ), and we have then

f17(x) =
N−1∑

i=1

N∑

j=i+1

(
1

‖xi − x j‖2α − 1

‖xi − x j‖α
)

In this study N = 5, α = 6, and the search space is [−2, 2]
[5].

Parameter Estimation for Frequency-Modulated (FM)
[5] ( f18): Frequency-Modulated (FM) sound wave synthesis
has an important role in several modern music systems. The
parameter optimization of an FM synthesizer is a six dimen-
sional optimization problem where the vector to be optimized
is x = {a1, w1, a2, w2, a3, w3} of the sound wave given in
Eq. (14). The problem is to generate a sound (1) similar to
target (2). This problem is a highly complex multimodal one
having strong epistasis, with minimum value f (x) = 0. This
problem has been tackled using genetic algorithms (GAs)
in [1], [2].The expressions for the estimated sound and the
target sound waves are given as:

y(t) = a1sin(w1tθ + a2sin(w2tθ + a3sin(w3tθ))) (14)

y0(t) = (1.0)sin((5.0)tθ−(1.5)sin((4.8)tθ

+(2.0)sin((4.9)tθ))) (15)

respectively where θ = 2π/100 and the parameters are
defined in the range [-6.4, 6.35]. The fitness function is the
summation of square errors between the estimated wave (1)
and the target wave (2) as follows:

f18(x) =
100∑

i=0

(y(t)− y0(t))
2

Acceptable error for this problem is 1.0E−05, i.e. an algo-
rithm is considered successful if it finds the error less than
acceptable error in a given number of generations.

Welded beam design optimization problem ( f19) The
problem is to design a welded beam for minimum cost, sub-
ject to some constraints [17,23]. The objective is to find the
minimum fabricating cost of the welded beam subject to con-
straints on shear stress τ , bending stress σ , buckling load Pc,
end deflection δ, and side constraint. There are four design
variables: x1, x2, x3 and x4. The mathematical formulation
of the objective function is described as follows:

f19(x) = 1.10471x2
1 x2 + 0.04811x3x4(14.0 + x2)
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Subject to:

g1(x) = τ(x)− τmax ≤ 0

g2(x) = σ(x)− σmax ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = δ(x)− δmax ≤ 0

g5(x) = P − Pc(x) ≤ 0

0.125 ≤ x1 ≤ 5, 0.1 ≤ x2, x3 ≤ 10 and 0.1 ≤ x4 ≤ 5

where

τ(x) =
√

τ ′2 − τ ′τ ′′ x2

R
+ τ ′′2,

τ ′ = P√
2x1x2

, τ ′′ = M R

J
, M = P

(
L + x2

2

)
,

R =
√

x2
2

4
+

(
x1 + x3

2

)2

,

J = 2/

(√
2x1x2

[
x2

2

4
+

(
x1 + x3

2

)2
])

,

σ (x) = 6P L

x4x3
2 , δ(x) = 6P L3

Ex4x3
2 ,

Pc(x) = 4.013Ex3x4
3

6L2

(

1 − x3

2L

√
E

4G

)

,

P = 6,000 lb, L = 14 in., δmax = 0.25 in.,

σmax = 30,000 psi, τmax = 13600 psi,

E = 30 × 106 psi, G = 12 × 106 psi.

The best known solution is (0.205730, 3.470489, 9.036624,
0.205729) , which gives the function value 1.724852. Accept-
able error for this problem is 1.0E−01.

6.2 Experimental setting

To prove the efficiency of O BL F ABC , it is compared with
ABC and recent variants of ABC named Gbest-guided ABC
(G ABC) [38], Best-So-Far ABC (BSF ABC) [3] and Modi-
fied ABC (M ABC) [1]. To test O BL F ABC, ABC,G ABC ,
BSF ABC and M ABC over considered problems, following
experimental setting is adopted:

– Colony size N P = 50 [7,9],
– φi j = rand[−1, 1],
– Number of food sources SN = N P/2,
– limit = 1,500 [1,15],
– The stopping criteria is either maximum number of func-

tion evaluations (which is set to be 200000) is reached
or the acceptable error (mentioned in Table 1) has been
achieved,

– The number of simulations/run =100,
– C = 1.5 [38],
– The value of β = 2 is to be set based on the empirical

experiments.
– To set termination criteria of LFLS, the performance of

OBLFABC is measured for considered test problems on
different values of ε and results are analyzed in Fig. 1a.
It is clear from Fig. 1a that ε = 15 gives better results.
Therefore, termination criteria is set to be ε = 15.
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Fig. 1 a Effect of LFLS termination criteria ε on success rate, b effect of parameter pr on success rate and c effect of parameter jr on success rate
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Table 2 Comparison of the
results of test problems Test function Algorithm SD ME AFE SR

f1 OBLFABC 2.87E−06 7.55E−06 7,465.64 100

ABC 1.66E−06 8.64E−06 16,520.09 100

GABC 3.05E−06 5.03E−06 9,314.71 100

BSFABC 5.64E−05 1.98E−05 47,522.01 95

MABC 2.68E−06 5.47E−06 10,350.53 100

f2 OBLFABC 1.23E−02 1.46E−02 115,073.86 68

ABC 1.03E−01 1.67E−01 199,254.48 1

GABC 1.71E−02 1.95E−02 151,300.35 46

BSFABC 1.61E−02 1.86E−02 153,393.46 47

MABC 8.26E−03 1.25E−02 147,787.15 52

f3 OBLFABC 6.67E−06 5.93E−06 988.51 100

ABC 6.83E−06 6.05E−06 1,925.52 100

GABC 6.54E−06 5.76E−06 1,204.65 100

BSFABC 6.99E−06 5.87E−06 25,770.82 88

MABC 6.49E−06 5.71E−06 28,716.34 87

f4 OBLFABC 1.21E−05 9.47E−05 56,381.43 100

ABC 7.33E−05 1.76E−04 180,578.91 18

GABC 2.15E−05 8.68E−05 90,834.53 97

BSFABC 7.57E−05 1.41E−04 147,931.24 50

MABC 8.02E−05 2.02E−04 187,320.13 13

f5 OBLFABC 2.53E−05 6.79E−05 5,184.77 100

ABC 2.69E−05 6.42E−05 8,771.65 100

GABC 2.58E−05 6.34E−05 7,305.93 100

BSFABC 1.55E−03 2.49E−04 8,453.82 97

MABC 1.49E−04 1.06E−04 67,336.12 88

f6 OBLFABC 7.15E+00 1.44E+00 75,645.49 85

ABC 1.05E+00 6.36E−01 176,098.02 23

GABC 1.60E−02 8.45E−02 99,219.48 99

BSFABC 3.79E+00 2.34E+00 179,970.99 19

MABC 9.19E−01 6.99E−01 180,961.73 23

f7 OBLFABC 2.64E−06 7.31E−06 6,693.71 100

ABC 2.42E−06 7.16E−06 9,013.5 100

GABC 2.08E−06 6.83E−06 5,585.5 100

BSFABC 2.18E−06 7.44E−06 18,122 100

MABC 1.61E−06 8.23E−06 8,702 100

f8 OBLFABC 1.07E+01 9.13E+01 200,034.54 0

ABC 1.21E+01 8.91E+01 200,011.71 0

GABC 9.24E+00 8.56E+01 200,006.8 0

BSFABC 1.77E+01 1.20E+02 200,036.53 0

MABC 1.15E+01 8.00E+01 200,015.14 0

f9 OBLFABC 3.73E−03 1.71E−03 81,595.29 82

ABC 2.21E−03 6.95E−04 61,650.9 90

GABC 7.35E−04 7.88E−05 38,328.96 99

BSFABC 6.34E−03 4.76E−03 115,441.96 58

MABC 2.21E−03 6.24E−04 85,853.52 92

f10 OBLFABC 1.63E−06 8.27E−06 11,675.15 100

ABC 1.80E−06 7.90E−06 16,767 100

GABC 1.37E−06 8.31E−06 9,366 100
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Table 2 continued
Test function Algorithm SD ME AFE SR

BSFABC 1.35E−06 8.39E−06 31,224 100

MABC 9.96E−07 8.93E−06 14,189.06 100

f11 OBLFABC 4.71E−15 5.68E−15 4,296.23 100

ABC 5.16E−06 1.04E−06 109,879.46 62

GABC 4.37E−15 4.87E−15 3,956.05 100

BSFABC 4.90E−15 6.62E−15 14,031.79 100

MABC 4.11E−15 4.73E−15 14,228.59 100

f12 OBLFABC 6.96E−06 8.91E−05 662.79 100

ABC 6.67E−06 8.92E−05 1,166.5 100

GABC 6.45E−06 8.79E−05 622 100

BSFABC 6.34E−06 8.91E−05 958.51 100

MABC 6.15E−06 8.95E−05 1,702.28 100

f13 OBLFABC 3.03E−06 1.95E−03 5,229.73 100

ABC 2.89E−06 1.94E−03 24,476.88 100

GABC 2.74E−06 1.95E−03 5,127.73 100

BSFABC 2.98E−06 1.94E−03 15,703.99 100

MABC 2.79E−06 1.95E−03 9,019.7 100

f14 OBLFABC 5.89E−06 5.27E−06 2,255.04 100

ABC 5.34E−06 4.86E−06 4,752.21 100

GABC 5.72E−06 5.07E−06 2,550.57 100

BSFABC 5.94E−06 5.27E−06 9,036.83 100

MABC 5.60E−06 4.83E−06 33,268.91 100

f15 OBLFABC 7.94E−03 5.21E−03 126,520.99 58

ABC 1.22E−02 1.42E−02 189,423.57 10

GABC 1.08E−02 1.09E−02 188,220.68 12

BSFABC 5.73E−03 2.93E−02 196,442.59 2

MABC 6.65E−03 4.98E−03 174,943.41 25

f16 OBLFABC 2.43E+00 1.51E+00 200,030.62 0

ABC 1.07E+01 1.69E+01 200,024.49 0

GABC 4.47E+00 6.84E+00 200,023.29 0

BSFABC 2.19E+01 2.66E+01 200,036.19 0

MABC 8.63E+00 1.51E+01 200,025.82 0

f17 OBLFABC 1.05E−04 8.91E−04 22,077.03 100

ABC 1.24E−04 8.77E−04 70,189.49 100

GABC 5.26E−04 1.11E−03 112,535.45 69

BSFABC 6.13E−04 9.46E−04 154,352.33 89

MABC 1.51E−01 4.66E−01 200,031.91 0

f18 OBLFABC 3.81E+00 1.68E+00 158,797.2 44

ABC 5.08E+00 6.01E+00 200,032.9 0

GABC 4.81E+00 3.10E+00 184,843.53 14

BSFABC 4.44E+00 1.01E+01 198,887.41 1

MABC 3.06E+00 2.85E+00 200,022.49 0

f19 OBLFABC 1.98E−02 1.06E−01 116,907.25 71

ABC 8.72E−02 2.47E−01 197,869.95 2

GABC 1.09E−02 9.95E−02 120,011.32 69

BSFABC 4.79E−03 9.57E−02 55,029.62 100

MABC 5.18E−03 9.37E−02 33,617.76 100
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Table 3 Summary of Table 2
outcome

Test problems OBLFABC
versus ABC

OBLFABC
versus GABC

OBLFABC
versus BSFABC

OBLFABC
versus MABC

f1 + + + +

f2 + + + +

f3 + + + +

f4 + + + +

f5 + + + +

f6 + − + +

f7 + − + +

f8 + − + +

f9 − − + −
f10 + − + +

f11 + + + +

f12 + − + +

f13 + − + +

f14 + − + +

f15 + + + +

f16 + + + +

f17 + + + +

f18 + + + +

f19 + + − −
Total number

of + sign
18 11 18 17

– In order to investigate the effect of the parameter
pr , described by algorithm 4 on the performance of
O BL F ABC , its sensitivity with respect to different val-
ues of pr in the range [0.1, 1], is examined in the Fig. 1b.
It can be observed from Fig. 1b that the test problems are
very sensitive towards pr and value 0.2 gives compara-
tively better results. Therefore pr = 0.2 is selected for
the experiments.

– In order to find out the optimal value of the jumping
rate constant jr for all the considered test problems,
O BL F ABC is executed for different values of jr in the
range [0.1, 0.9]. The sensitivity analysis of jr is shown
in Fig. 1c. It is clear from Fig. 1c that jr = 0.1 gives
comparatively better results. Hence, for the experiments,
jr = 0.1 is selected.

– Parameter settings for the algorithms GABC, BSFABC
and MABC are similar to their original research papers.

6.3 Results comparison

Numerical results with experimental setting of Subsect. 6.2
are given in Table 2. In Table 2, standard deviation (SD),
mean error (M E), average function evaluations (AF E) and
success rate (S R) are reported. Table 2 shows that most of
the time OBLFABC outperforms in terms of reliability, effi-
ciency and accuracy as compare to the basic ABC, GABC,

BSFABC and MABC. Some more intensive analyses based
on acceleration rate (AR), performance indices and boxplots
have been carried out for results of ABC and its variants.

O BL F ABC, ABC,G ABC, BSF ABC , and M ABC are
compared through S R,M E and AF E in Table 2. First S R
is compared for all these algorithms and if it is not possible
to distinguish the algorithms based on S R then comparison
is made on the basis of AF E . M E is used for compari-
son if it is not possible on the basis of S R and AF E both.
Outcome of this comparison is summarized in Table 3. In
Table 3, ‘+’ indicates that the O BL F ABC is better than the
considered algorithms and ‘−’ indicates that the algorithm
is not better or the difference is very small. The last row
of Table 3, establishes the superiority of O BL F ABC over
ABC, BSF ABC,M ABC .

Further, we compare the convergence speed of the con-
sidered algorithms by measuring the average function eval-
uations (AFEs). A smaller AFEs means higher convergence
speed. In order to minimize the effect of the stochastic nature
of the algorithms, the reported function evaluations for each
test problem is the average over 100 runs. In order to com-
pare convergence speeds, we use the acceleration rate (AR)
which is defined as follows, based on the AFEs for the two
algorithms ALG O and OBLFABC:

AR = AF E ALG O

AF EO BL F ABC
, (16)
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Table 4 Acceleration Rate
(AR) of O BL F ABC compare
to the basic ABC,G ABC,
BSF ABC and M ABC

Test problems ABC GABC BSFABC MABC

f1 2.212816316 1.247677359 6.365430157 1.386422329

f2 1.731535555 1.314810766 1.33300004 1.284280809

f3 1.947901387 1.218652315 26.07036853 29.05012595

f4 3.202808265 1.611071766 2.623758213 3.32237281

f5 1.691810823 1.409113615 1.630510129 12.98729163

f6 2.327938123 1.311637746 2.379137077 2.392234223

f7 1.346562669 0.834440094 2.707317765 1.300026443

f8 0.99988587 0.999861324 1.000009948 0.999903017

f9 0.755569347 0.469744761 1.414811566 1.052187203

f10 1.436127159 0.802216674 2.674398188 1.215321431

f11 1.497171102 1.487663668 1.552648221 1.382722424

f12 25.57578621 0.920818951 3.266070485 3.311878088

f13 1.759984309 0.938457128 1.446174505 2.568354984

f14 4.680333402 0.980496125 3.002829974 1.724697068

f15 2.107372818 1.131053108 4.00739233 14.7531352

f16 0.999969355 0.999963356 1.000027846 0.999976004

f17 3.17929948 5.097399877 6.991535093 9.060634968

f18 1.259675234 1.164022602 1.252461693 1.259609678

f19 1.692537888 1.026551561 0.470711782 0.28755924

where, ALG O ∈ { ABC, GABC, BSFABC, MABC} and
AR > 1 means OBLFABC is faster. In order to investigate
the AR of the proposed algorithm compare to the basic ABC
and its variants, results of Table 2 are analyzed and the value
of AR is calculated using Eq. (16). Table 4 shows a clear
comparison between O BL F ABC and ABC, OBLFABC
and GABC, OBLFABC and BSFABC, and OBLFABC and
MABC in terms of AR. It is clear from the Table 4 that conver-
gence speed of OBLFABC is faster among all the considered
algorithms.

For the purpose of comparison in terms of consolidated
performance, boxplot analyses have been carried out for all
the considered algorithms. The empirical distribution of data
is efficiently represented graphically by the boxplot analy-
sis tool [34]. The boxplots for ABC, OBLFABC, GABC,
BSFABC and MABC are shown in Fig. 2. It is clear from
this figure that OBLFABC is better than the considered
algorithms as interquartile range and median are compar-
atively low.

Further, to compare the considered algorithms, by giv-
ing weighted importance to the success rate, the mean error
and the average number of function evaluations, performance
indices (P I ) are calculated [6]. The values of P I for the
ABC, OBLFABC, GABC, BSFABC, and MABC are calcu-
lated by using following equations:

P I = 1

Np

Np∑

i=1

(k1α
i
1 + k2α

i
2 + k3α

i
3)
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Fig. 2 Boxplots graphs for average function evaluation

where αi
1 = Sri

T ri ; αi
2 =

{
M f i

A f i , if Sri > 0.

0, if Sri = 0.
; and αi

3 = Moi

Aoi

i = 1, 2, . . . , Np

– Sri = Successful simulations/runs of ith problem.
– T ri = Total simulations of ith problem.
– M f i = Minimum of average number of function eval-

uations used for obtaining the required solution of ith
problem.

– A f i = Average number of function evaluations used for
obtaining the required solution of ith problem.

– Moi = Minimum of mean error obtained for the i th prob-
lem.
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Fig. 3 Performance index for test problems; a for case (1), b for case (2) and c for case (3)

– Aoi = Mean error obtained by an algorithm for the i th
problem.

– Np = Total number of optimization problems evaluated.

The weights assigned to the success rate, the average number
of function evaluations and the mean error are represented
by k1, k2 and k3 respectively where k1 + k2 + k3 = 1 and
0 ≤ k1, k2, k3 ≤ 1. To calculate the P I s, equal weights
are assigned to two variables while weight of the remaining
variable vary from 0 to 1 as given in [6]. Following are the
resultant cases:

1. k1 = W, k2 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

2. k2 = W, k1 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

3. k3 = W, k1 = k2 = 1−W
2 , 0 ≤ W ≤ 1

The graphs corresponding to each of the cases (1), (2) and
(3) for ABC, OBLFABC, GABC, BSFABC, and MABC are
shown in Figs. 3a–c respectively. In these figures the weights
k1, k2 and k3 are represented by horizontal axis while the P I
is represented by the vertical axis.

In case (1), average number of function evaluations and
the mean error are given equal weights. P I s of the consid-
ered algorithms are superimposed in Fig. 3a for comparison
of the performance. It is observed that P I of OBLFABC
are higher than the considered algorithms. In case (2), equal
weights are assigned to the success rate and mean error and
in case (3), equal weights are assigned to the success rate and
average function evaluations. It is clear from Fig. 3b, c that,
the algorithms perform same as in case (1).

7 Conclusion

In this paper, a new local search strategy based on the Lévy
Flight random walk is proposed for finding the new solutions
around the best solution. In this search strategy, new solu-
tions are generated in the neighborhood of the best solution
depending upon perturbation rate. The proposed local search
strategy along with opposition based learning (OBL) has
been employed to improve the convergence of ABC. The pro-
posed Lévy flight search strategy is used to exploit the search
space whereas OBL is used to introduce opposition-based
swarm generation to speed up the convergence. Further,
inspired by PSO and GABC, a modified position update equa-
tion is used to generate the solutions in the search process.
By embedding these three modifications within ABC, a new
variant of ABC is proposed and named as OBLFABC. Fur-
ther, the proposed algorithm is compared with the basic ABC,
GABC, BSFABC, and MABC through the help of exper-
iments over test problems and shown that the OBLFABC
outperforms to the considered algorithms in terms of relia-
bility, efficiency and accuracy.
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