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Abstract Artificial Bee Colony (ABC) is a well known

population based efficient algorithm for global optimiza-

tion. Though, ABC is a competitive algorithm as compared

to many other optimization techniques, the drawbacks like

preference on exploration at the cost of exploitation and

slow convergence are also associated with it. In this article,

basic ABC algorithm is studied by modifying its position

update equation using the differential evolution with global

and local neighborhoods like concept of food sources’

neighborhoods. Neighborhood of each colony member

includes 10 % members from the whole colony based on

the index-graph of solution vectors. The proposed ABC is

named as ABC with Global and Local Neighborhoods

(ABCGLN) which concentrates to set a trade off between

the exploration and exploitation and therefore increases the

convergence rate of ABC. To validate the performance of

proposed algorithm, ABCGLN is tested over 24 benchmark

optimization functions and compared with standard ABC

as well as its recent popular variants namely, Gbest guided

ABC, Best-So-Far ABC and Modified ABC. Intensive

statistical analyses of the results shows that ABCGLN is

significantly better and takes on an average half number of

function evaluations as compared to other considered

algorithms.

Keywords Artificial bee colony � Optimization �
Exploration–exploitation � Swarm intelligence

1 Introduction

Swarm Intelligence is one of the recent outcome of the

research in the field of Nature inspired algorithms. Col-

laborative trial and error method is the main concept

behind the swarm intelligence which enables the algorith-

mic procedure to find the solution. Researchers are ana-

lyzing such collaboration among the social insects while

searching food for them and creating the intelligent struc-

tures known as Swarm Intelligence. Spider monkey opti-

mization (SMO) (Bansal et al. 2013), Ant colony

optimization (ACO) (Dorigo and Di Caro 1999), Particle

swarm optimization (PSO) (Kennedy and Eberhart 1995),

Bacterial foraging optimization (BFO) (Passino 2002) are

some examples of swarm intelligence based techniques.

The work presented in the articles (Dorigo and Di Caro

1999; Kennedy and Eberhart 1995; Price et al. 2005;

Vesterstrom and Thomsen 2004) proved its efficiency and

potential to deal with non linear, non convex and discrete

optimization problems.

Karaboga (2005) contributed the recent addition to this

category known as Artificial bee colony (ABC) optimiza-

tion algorithm. ABC is a simple but effective algorithm for

both continuous and discrete optimization problems. The

ABC algorithm has emerged as one of the popular tool in

the machine intelligence and has successfully been tested
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on almost all domains of science and engineering like

electronics engineering (Kavian et al. 2012; Chidambaram

and Lopes 2009), electrical engineering (Jones and Bouffet

2008; Nayak et al. 2009; Sulaiman et al. 2012), computer

science engineering (Lei et al. 2010; Karaboga and Cet-

inkaya 2011; Lam et al. 2012), mechanical engineering

(Pawar et al. 2008; Xu and Duan 2010; Banharnsakun et al.

2012), civil engineering (Li et al. 2011; Mandal et al. 2012;

Akay and Karaboga 2012), medical pattern classification

and clustering problems (Akay et al. 2008) and mathe-

matical graph problems (Xing et al. 2007; Singh 2009; Yeh

and Hsieh 2011). Many of the recent modifications and

applications of ABC algorithm can be studied in Bansal

et al. (2013).

The ABC algorithm mimics the foraging behavior of

honey bees while searching food for them. ABC is a simple

and population based optimization algorithm. Here the

population consists of possible solutions in terms of food

sources for honey bees whose fitness is regulated in terms

of nectar amount which the food source contains. The

swarm updating in ABC is due to two processes namely,

the variation process and the selection process which are

responsible for exploration and exploitation, respectively.

However the ABC achieves a good solution but, like the

other optimization algorithms, it has also problem of pre-

mature convergence and stagnation. On the other part, it is

also required to tune the ABC control parameters based on

problem. Also literature says that basic ABC itself has

some drawbacks like stop proceeding toward the global

optimum even though the population has not converged to

a local optimum (Karaboga and Akay 2009) and it is

observed that the position update equation of ABC algo-

rithm is inefficient to balance exploration and exploitation

(Zhu and Kwong 2010). Therefore these drawbacks require

a modification in position update equation of ABC in order

to make it capable to balance exploration and exploitation.

These drawbacks have also addressed in earlier research.

To enhance the exploitation, Wei-feng Gao and Liu (2011)

improved position update equation of ABC such that the

bee searches only in neighborhood of the previous itera-

tion’s best solution. Anan Banharnsakun et al. (2011)

proposed the best-so-far selection in ABC algorithm and

incorporated three major changes: The best-so-far method,

an adjustable search radius, and an objective-value-based

comparison in ABC. To solve constrained optimization

problems, D. Karaboga and B. Akay (2011) used Deb’s

rules consisting of three simple heuristic rules and a

probabilistic selection scheme in ABC algorithm. Dervis

Karaboga (2005) examined and suggested that the limit

should be taken as SN � D, where, SN is the population

size and D is the dimension of the problem and coefficient

/ij in position update equation should be adopted in the

range of [-1, 1]. Further, Kang et al. (2011) introduced

exploitation phase in ABC using Rosenbrock’s rotational

direction method and named modified ABC as Rosenbrock

ABC (RABC). Qingxian and Haijun proposed a new ini-

tialization scheme by making the initial group symmetrical

and to increase the ABC’s convergence, they applied

Boltzmann selection mechanism in place of roulette wheel

selection (Haijun and Qingxian 2008). Tsai et al. (2009)

proposed Interactive ABC (IABC) in which author applied

the roulette wheel selection to select onlooker bees and he

also used Newtonian law of universal gravitation to

enhance the exploitation in onlooker bee phase. Zhu et al.

(2010) also modified the position update equation of basic

ABC by incorporated best individual member information

in its position update equation. Baykasoglu et al. (2007)

solved the generalized assignment problem by hybriding

the ABC algorithm with shift neighborhood searches and

greedy randomized adaptive search heuristic. Furthermore,

Bahriye Akay and Dervis Karaboga (2010) also presented

an improved ABC to solve real-parameter optimization

problems and they also analyzed the effects of the pertur-

bation rate, the scaling factor limit parameter on real-

parameter optimization. Some other important improved

versions of ABC can be found in Bansal et al. (2013);

Sharma et al. (2013); Bansal et al. (2013); Jadon et al.

(2014).

Inspired from the article ‘‘Differential evolution using a

neighborhood-based mutation operator (DEGL) ’’(Das

et al. 2009), we propose a new position update equation for

employed bees in ABC which linearly incorporate two

components namely local and global components in its

swarm updating process in order to set a trade off between

the exploration and exploitation capabilities of ABC. Here,

local component is responsible for explorative moves and

has better chance of locating the minima of test function.

On the other hand, global component is responsible for

exploitive moves and rapidly converges to a minimum of

the test function.

Rest of the paper is organized as follows. Next Sect. 2

explains standard ABC algorithm. In Sect. 3, proposed

modified ABC (ABCGLN) is described. Section 4 details

about the benchmark mathematical optimization functions

used in this article and also statistical analysis to compare

the performance of the proposed strategy with respect to

other recent ABC variants. Finally, in Sect. 5, paper is

concluded.

2 Artificial Bee Colony(ABC) algorithm

The ABC algorithm is a population based recent swarm

intelligence based algorithm which is inspired by food
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foraging behavior of honey bees. In ABC, each solution is

known as food source of honey bees whose fitness is

determined in terms of the quality of the food source.

Artificial Bee Colony is made of three group of bees:

employed bees, onlooker bees and scout bees. The number

of employed and onlooker bees is equal. The employed

bees searches the food source in the environment and store

the information like the quality and the distance of the food

source from the hive. Onlooker bees wait in the hive for

employed bees and after collecting information from them,

they start searching in neighborhood of that food sources

which are having better nectar. If any food source is

abandoned then scout bee finds new food source randomly

in search space. While searching the solution of any opti-

mization problem, ABC algorithm first initializes ABC

parameters and swarm then it requires the repetitive iter-

ations of the three phases namely employed bee phase,

onlooker bee phase and scout bee phase. In ABC, first

initialization of the solutions is done as:

2.1 Initialization of the swarm

If D is the number of variables in the optimization problem

then each food source xiði ¼ 1; 2; :::; SNÞ is a D-dimen-

sional vector among the SN food sources and is generated

using a uniform distribution as:

xij ¼ xminj þ rand½0; 1�ðxmaxj � xminjÞ ð1Þ

here xi represents the ith food source in the swarm, xminj

and xmaxj are bounds of xi in jth dimension and rand½0; 1� is
a uniformly distributed random number in the range [0, 1].

After initialization phase ABC requires the cycle of the

three phases namely employed bee phase, onlooker bee

phase and scout bee phase to be executed.

2.2 Employed bees phase

In this phase, ith candidate’s position is updated using

following equation:

vij ¼ xij þ /ijðxij � xkjÞ ð2Þ

here k 2 f1; 2; :::; SNg and j 2 f1; 2; :::;Dg are randomly

chosen indices and k 6¼ i. /ij is a random number in the

range [-1,1]. After generating new position, the position

with better fitness between the newly generated and old one

is selected.

2.3 Onlooker bees phase

In this phase, employed bees share the information

associated with their food sources like quality (nectar)

and position of the food source with the onlooker bees in

the hive. Onlooker bees evaluate the available informa-

tion about the food source and based on its fitness they

select solutions with probability probi. Here probi can be

calculated as function of fitness (there may be some

other):

probiðGÞ ¼
0:9� fitnessi

maxfit
þ 0:1; ð3Þ

here fitnessi is the fitness value of the ith solution and

maxfit is the maximum fitness amongst all the solutions.

Based on this probability, onlooker selects a solution and

modifies it using the same Eq. (2) as in employed bee

phase. Again by applying greedy selection, if the fitness is

higher than the previous one, the onlooker bee stores the

new position in its memory and forgets the old one.

2.4 Scout bees phase

If for a predetermined number of cycles, any bee’s posi-

tion is not getting updated then that food source is taken

to be abandoned and this bee becomes scout bee. In this

phase, the abandoned food source is replaced by a ran-

domly chosen food source within the search space. In

ABC, the number of cycles after which a particular food

source becomes abandoned is known as limit and is a

crucial control parameter. In this phase the abandoned

food source xi is replaced by a randomly chosen food

source within the search space using the Eq. (1) as in

initialization phase.

2.5 Main steps of the ABC algorithm

The pseudo-code of the ABC is shown in Algorithm 1

(Karaboga and Akay 2009).

Int J Syst Assur Eng Manag

123



3 Artificial bee colony algorithm with global and local

neighborhoods

For an efficient optimization algorithm, two concepts

exploration and exploitation should be well balanced which

are actually contradictory to each other in nature. Exploration

means the ability of exploring diverse regions of the search

space and exploitation means refining already explored

regions. In ABC, at any instance, a solution is updated

through information flow from other solutions of the swarm.

This position updating process uses a linear combination of

current position of the potential solution which is going to be

updated and position of a randomly selected solution as step

size with a random coefficient /ij 2 ½�1; 1�. This process

plays an important role to decide the quality of new solution.

If the current solution is far from randomly selected solution

and absolute value of /ij is also high then the change will be

large enough to jump the true optima. On the other hand,

small change will decrease the convergence rate of whole

ABC process. Further, It is also suggested in literature (Ka-

raboga and Akay 2009; Zhu and Kwong 2010) that basic

ABC itself has some drawbacks, like stop proceeding toward

the global optimum even though the population has not

converged to a local optimum. Karaboga and Akay (2009)

also analyzed the various variants of ABC and found that the

ABC in its current form shows poor performance and remains

inefficient to balance the exploration and exploitation capa-

bilities of the search space. Consequently, convergence speed

of ABC is also deteriorated.

In above context, we are proposing a modified ABC by

incorporating local and global neighborhoods concept in its

position update equation of employed bee phase. This

modified ABC is now onward called as ABCGLN. The

proposed modified position update equation is the inspira-

tion from DEGL of Das et al. (2009). In DEGL, author

proposed a very strong and promising DE version which

includes two neighborhood models; the local neighborhood

model and the global neighborhood model. In local neigh-

borhood model each member is updated through best solu-

tion found so far in its sub population (i.e, local

neighborhood), while in the global neighborhood model

each member takes the advantage of best solution found so

far in the whole population. We adopted both neighborhood

strategies of DEGL in the proposed ABCGLN algorithm.

In ABCGLN, the neighborhood and neighborhood

structure of any bee are crucial parts which need to be

focussed. It should be clear here that the neighborhood

structure of any solution is static and has been defined on the

set of indices of the solutions. Neighborhood of a solution is

the set of other solutions to which it is connected. For global

neighborhood model, neighborhood structure is the star

topology i.e, each solution is connected to each other

solution and therefore cardinality of neighborhood of any

solution in this model is equal to the number of food sour-

ces. On the other hand, for local neighborhood model, ring

topology is adopted as neighborhood structure and cardi-

nality of neighborhood is considered as 10 % of the number

of food sources i.e, neighborhood of each solution includes

10 % solutions based on their indices as 5 % from the for-

ward side and 5 % from the backward side. Here, it should

be noticed that solutions belonging to a local neighborhood

are not necessarily local in the sense of their geographical

nearness or similar fitness values but, the overlapping

neighborhoods based on the indices of the swarm members

have been considered in ABC as shown in Fig. 1. For

example, if population size is 60 then local neighborhood of

20th indexed solution will include solutions from indexed

17th to 23th, similarly 21st indexed solution’s neighborhood

includes solutions from indexed 18th to 24th (see Fig. 1). In

ABCGLN, for each employed bee, two components a local

and a global component are created. The local component

for a bee is created based on best solution position in that

bee’s local neighborhood and two other solutions selected

randomly from this neighborhood while global component is

created based on best solution of whole swarm and two other

solutions selected randomly from the swarm i.e, from the

global neighborhood. The mathematical equations for these

components are as follows:

Lij ¼ xij þ ðprobiÞðxlj � xijÞ þ /ijðxr1j � xr2jÞ;

Gij ¼ xij þ ð1� probiÞðxgj � xijÞ þ /ijðxR1j � xR2jÞ
ð4Þ

where, each j represents the jth dimension of the each

position, Li and Gi are the local and global components

respectively. xl and xg are respectively the best positions in

local and global neighborhoods of ith solution. xr1; xr2 are

the two neighbors chosen randomly from the local neigh-

borhood of ith solution such that r1 6¼ r2 6¼ i. xR1; xR2 are

the two neighbors chosen randomly from the global neigh-

borhood i.e, from whole swarm such that R1 6¼ R2 6¼ i. /ij

is random number in ½�1; 1� and probi is the probability of

ith solution as in Eq. (3). Here in both equations the third

term i.e, difference between two randomly selected neigh-

bors is added so that individual member should not follow

only the best position in order to prevent the swarm from

getting trapped in local minima. Also second term in both

the equations is multiplied by their probabilities which is a

function of fitness. It is clear that solution with better fitness

will give more weightage to its local best than the global

best in order to prevent the swarm to converge too quickly

as global best may be a local optima in initial stages. On the

other hand the solution with low fitness will give priority to

global best more than the local best as there surroundings are

not good enough so they follow better directions. Finally

Int J Syst Assur Eng Manag

123



both the local and the global components together guide the

new direction for employed bees as follows: for ith

employed bee, the new position is,

vij ¼ ðprobiÞ � Gij þ ð1� probiÞ � Lij ð5Þ

Now based on greedy selection, employed bee selects one

between the old and new positions. In this way, the

involvement of weighted linear sum of both local and global

best components, is expected to balance the exploration and

exploitation capabilities of ABC algorithm as the local best

components of respective bees explore the search space or

tries to identify the most promising search space regions,

while the global best component will exploit the identified

search space. The pseudo code of implementation of this

whole neighborhood concept in employed bee phase of ABC

is explained in Algorithm 2. Algorithm 2 introduced a new

parameter cr. For each dimension of employed bee, a random

number between 0 and 1 is generated and if it is less than cr

value then that particular dimension will be changed. Actu-

ally, in basic ABC, only one random dimension of employed

bee is changed for employed in order to generate neighbor-

hood solution but in proposed algorithm ABCGLN, the

number of dimensions to be changed are selected based on

probability cr. In ABCGLN, cr is set to a low value 0:3 based

on its sensitive analysis carried out in Fig. 2.

The ABCGLN is composed of three phases: employed

bee phase, onlooker bee phase and scout bee phase. Only

the employed bee phase is changed and other phases;

onlooker and scout bee remain same as in basic ABC. Here

the new position search strategy (explained in Eqs. (4) and

(5)) is proposed for employed bees. The pseudo-code of the

proposed ABCGLN algorithm is shown in Algorithm 3.

4 Experimental results and discussion

4.1 Test problems under consideration

To validate the effectiveness of the proposed algorithm AB-

CGLN, 24 mathematical optimization problems (f1 to f24) of

different characteristics and complexities are taken into con-

sideration (listed in Table 1). These all problems are contin-

uous in nature. Test problems f1 � f17 and f22 � f24 are taken

from Ali et al. (2005) and test problems f18 � f21 are taken

from Suganthan et al. (2005) with the associated offset values.

Table 1 includes various kind of unimodal, multimodal, sep-

arable and non separable test problems. A unimodal function

f ðxÞ has a single extremum (minimum or maximum in the

range specified for x) while, a function having more than one

peaks in the search space i.e., local extremum, is said multi-

modal. Algorithms are tested on this type of functions to check

their ability to coming out of local minima.
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4.2 Experimental setting

The results obtained from the proposed ABCGLN are

stored in the form of success rate, average number of

function evaluations, standard deviation of the fitness

and mean error. Results for test problems (Table 1) are

also obtained from the basic ABC and recent variants of

ABC named Gbest-guided ABC (GABC) (Zhu and

Kwong 2010), Best-So-Far ABC (BSFABC) (Ban-

harnsakun et al. 2011) and Modified ABC (MABC)

(Akay and Karaboga 2010) for the comparison purpose.

The following parameter setting is adopted while

implementing our proposed and other considered algo-

rithms to solve the problems:

• The number of simulations/run = 100,

• Colony size NP ¼ 50 (Diwold et al. 2011; El-Abd

2011) and Number of food sources SN ¼ NP=2,

• /ij ¼ rand½�1; 1� and limit ¼ dimension� number of

food sources ¼ D� SN (Karaboga and Akay 2011;

Akay and Karaboga 2010),

• The terminating criteria: Either acceptable error (men-

tioned in Table 1) meets or maximum number of

function evaluations (which is set to be 200000) is

reached,

• The parameter cr in Algorithm 2 is set to 0:3 based on

its sensitive analysis in range ½0:1; 1� as explained in the

Fig. 2. Figure 2 shows a graph between cr and the sum

of the successful runs for all the considered problems. It

is clear that cr ¼ 0:3 provides the highest success rate.

• Parameter settings for the other considered algorithms

ABC, GABC, BSFABC and MABC are adopted from

their original articles.

4.3 Results analysis of experiments

Tables 2, 3 and 4 present the numerical results comparison

of all considered algorithms for benchmark problems f1 �
f24 with the experimental settings shown in Sect. 4.2.

Tables 2 , 3 and 4 show the results of the proposed and

other considered algorithms in terms of success rate (SR),

average number of function evaluations (AFE) and mean

error (ME) respectively. Here SR represents the number of

times, algorithm achieved the function optima with

acceptable error in 100 runs, AFE is the average number of

function evaluations of 100 runs by the algorithm to reach

at the termination criteria and ME is the mean of absolute

difference between exact and obtained solutions over 100

runs. Mathematically ME and AFE are defined as:

It can be seen from Table 2 that ABCGLN is more reliable

as it has achieved higher or equal success rate than all the

considered algorithms on all functions except f3. It can be

observed from Table 3 that most of the time, ABCGLN is

more efficient as it took less number of function evalua-

tions on 23 out of 24 test problems than the ABC and other

considered modified ABC algorithms. Table 4 shows a

clear superiority of ABCGLN in terms of accuracy as

ABCGLN’s mean error is less than the mean error

achieved by the other algorithms on 19 out of 24 test

functions. While comparing all three factors simulta-

neously then it can be analyzed that ABCGLN costs less

than the considered algorithms over 19 test problems

(f1 � f2; f4 � f7; f9 � f10; f12 � f13; f15 � f20 and f22 � f24)

out of 24 test functions. As these functions include uni-

model, multimodel, separable, non separable, lower and

higher dimensional functions, it can be stated that AB-

CGLN balances the exploration and exploitation capabili-

ties efficiently on most of the functions. This should be

ME ¼
P100

i¼1 j Exact solution � Obtained solution j for run i

100

AFE ¼
P100

i¼1 Number of function evaluations to meet the termination criteria for run i

100

Fig. 1 Local neighborhood topology for radius 3
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noticed that ABCGLN performed worst than all considered

algorithms on unimodel nonseparable test function f3.

Some other statistical tests like the Mann-Whitney U rank

sum test, acceleration rate (AR) (Rahnamayan et al. 2008),

boxplots and performance indices (Bansal and Sharma

2012) have also been done in next subsection to analyze the

algorithms output more intensively.

4.4 Statistical analysis

Since the empirical distribution of results can efficiently be

represented by boxplot (Williamson et al. 1989) , the

boxplots for success rate (SR), average number of function

evaluations (AFE) and mean error (ME) for ABCGLN and

considered algorithms have been represented in Fig. 3 (a),

(b), (c). Figures 3 (a), (b), (c) show that ABCGLN is cost

effective in terms of SR, AFE and ME as the interquartile

range and median are very low for ABCGLN. It can be

observed from Fig. 3(a) that box of ABCGLN for SR is not

being seen, as in almost all cases, ABCGLN achieved the

100 % success rate so there is negligible variation which

boxplot is unable to represent and hence is showing a

constant line segment instead of variation box. Boxplots for

average number of function evaluations in Fig. 3(b) shows

clear superiority of ABCGLN over other considered algo-

rithms as the interquartile range and median for ABCGLN

are very low. Boxplots for mean error in Fig. 3(c) repre-

sents that ABCGLN and MABC achieved almost equal and

less average error than the other algorithms.

Now, it is clear from boxplot for AFE in Figure 3(b) that

results of ABCGLN differs from the other algorithms. But

to check, significant difference between ABCGLN’s and

other algorithm’s output or the difference is due to some

randomness, we applied another statistical test namely, the

Mann-Whitney U rank sum (Mann and Whitney 1947) on

AFE. We have chosen this non parametric test to compare

the performance of the algorithms as boxplots of Fig. 3 (b)

show that average number of function evaluations used by

the considered algorithms to solve the different problems

are not normally distributed. The test is performed at 5 %

level of significance (a ¼ 0:05) between our proposed

ABCGLN and each other considered algorithm.

The results of the Mann-Whitney U rank sum test for the

average function evaluations of 100 simulations is pre-

sented in Table 5. First we checked that two data sets are

significantly different or not through Mann-Whitney U

rank sum test. If significant difference is not seen (i.e., the

null hypothesis is accepted) then sign ‘=’ appears and when

significant difference is observed i.e., the null hypothesis is

rejected then we compared the average number of function

evaluations. And we use signs ‘?’ and ‘-’ for the case

where ABCGLN takes less or more average number of

function evaluations than the other algorithms, respec-

tively. Therefore in Table 5, ‘?’ indicates that ABCGLN is

significantly better and ‘-’ shows that ABCGLN is sig-

nificantly worse, while ‘=’ means that performance of both

algorithms is equivalent. Since Table 5 contains 91 ‘?’

signs out of 96 comparisons, it can be concluded that

ABCGLN performance is significantly cost effective than

other considered algorithms over test problems of Table 1.

Further, to compare the considered algorithms by giving

weighted importance to SR, AFE and ME, performance

indices (PIs) are calculated (Bansal and Sharma 2012). The

values of PI for the ABCGLN and other considered algo-

rithms, are calculated using following equations:

PI ¼ 1

Np

XNp

i¼1

ðk1a
i
1 þ k2a

i
2 þ k3a

i
3Þ

where ai
1 ¼ Sri

Tri; ai
2 ¼

Mf i

Af i
; if Sri [ 0:

0; if Sri ¼ 0:

8
<

:
; and ai

3 ¼ Moi

Aoi

i ¼ 1; 2; :::;Np

• k1; k2 and k3 are the weights assigned to SR, AFE and

ME respectively, where k1 þ k2 þ k3 ¼ 1 and

0� k1; k2; k3� 1.

• Sri ¼ Successful simulations/runs of ith problem.

• Tri ¼ Total simulations of ith problem.

• Mf i ¼ Minimum of mean number of function evalua-

tions performed to achieve the required solution of ith

problem.

• Af i ¼ Average number of function evaluations per-

formed to achieve the required solution of ith problem.

• Moi ¼ Minimum of mean error obtained for the ith

problem.

• Aoi ¼ Mean Error achieved by an algorithm for the ith

problem.

• Np ¼ Total number of optimization problems

evaluated.

To calculate the PIs, equal weights are assigned to two out

of SR, AFE and ME variables and weight of the remaining
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Table 3 Average number of function evolutions (AFE) done by the algorithms in 100 runs, TP: Test Problems

TP ABC BSFABC GABC MABC ABCGLN TP ABC BSFABC GABC MABC ABCGLN

f1 20639 29864 24937 23004 9591 f13 198760 194001 186012 169918 141626

f2 46004 43115 33900 42835 24210 f14 28861 21968 26702 20921 10012

f3 183117 180542 175911 189716 186909 f15 28215 27917 14007 10818 6347

f4 49107 42879 47858 43630 18046 f16 199667 159666 160337 140006 77760

f5 23016 31789 28572 22764 9962 f17 179860 142527 99409 170962 59392

f6 16836 16791 22576 16305 7319 f18 181580 171251 110077 150959 80523

f7 200000 200000 200000 200000 131207 f19 9247 12203 8839 8664 6073

f8 21271 31445 25837 22992 10324 f20 88929 99271 38443 81323 27653

f9 52841 41807 52705 32889 18726 f21 17662 31160 16069 14217 7961

f10 190143 157648 122536 26303 11328 f22 126814 94450 96819 98001 8697

f11 16096 14647 15017 9490 3394 f23 28429 18816 5873 9134 4439

f12 88007 100336 66012 70527 55651 f24 72011 71508 38101 60152 25071

Bold values indicate the best value achieved among all algorithms

Table 2 Success Rate (SR) achieved by the algorithms in 100 runs, TP: Test Problems

TP ABC BSFABC GABC MABC ABCGLN TP ABC BSFABC GABC MABC ABCGLN

f1 100 100 100 100 100 f13 3 9 23 30 89

f2 97 100 100 100 100 f14 100 100 100 100 100

f3 22 24 25 10 9 f15 96 98 100 100 100

f4 100 100 100 100 100 f16 1 31 33 39 93

f5 100 100 100 100 100 f17 21 57 88 27 94

f6 100 100 100 100 100 f18 21 24 56 34 100

f7 0 0 0 0 100 f19 100 100 100 100 100

f8 100 100 100 100 100 f20 83 82 98 92 98

f9 100 100 100 100 100 f21 100 100 100 100 100

f10 57 63 97 99 100 f22 53 57 53 54 100

f11 100 100 100 100 100 f23 100 99 100 100 100

f12 84 84 98 100 100 f24 99 100 100 100 100

Table 4 Mean Error (ME) achieved by the algorithms in 100 runs, TP: Test Problems

TP ABC BSFABC GABC MABC ABCGLN TP ABC BSFABC GABC MABC ABCGLN

f1 8.17E-06 7.49E-06 8.26E-06 8.95E-06 7.46E206 f13 9.34E?00 4.12E?00 8.51E?00 1.06E?00 1.02E201

f2 2.28E-04 5.96E-06 6.92E-06 9.24E-06 3.29E206 f14 7.08E-06 6.99E206 7.91E-06 9.27E-06 7.98E-06

f3 1.60E100 1.97E?00 2.75E?00 3.60E?01 3.85E?00 f15 8.32E-06 2.05E-05 5.64E-06 5.23E-06 5.02E206

f4 8.28E-06 8.11E-06 9.06E-06 9.51E-06 8.06E206 f16 1.46E-01 3.07E-02 2.44E-02 1.25E-02 7.37E203

f5 7.22E-06 7.01E-06 7.98E-06 9.23E-06 6.93E206 f17 1.77E-04 1.34E-04 9.92E-05 1.95E-04 1.28E205

f6 7.46E-06 7.33E-06 8.31E-06 9.11E-06 7.04E206 f18 8.14E?00 2.72E?00 5.59E-01 8.54E-01 8.45E202

f7 9.89E?01 8.67E?01 1.06E?02 1.47E?00 9.35E203 f19 6.98E-06 7.09E-06 7.16E-06 8.34E-06 6.70E206

f8 7.63E-06 7.15E206 8.17E-06 9.02E-06 8.88E-06 f20 7.44E-04 4.04E-03 1.54E-04 6.22E-04 1.53E204

f9 9.05E-06 8.88E-06 9.22E-06 9.49E-06 8.40E206 f21 7.63E206 8.16E-06 8.32E-06 9.06E-06 8.89E-06

f10 9.77E-01 9.60E-01 9.34E-01 9.33E-01 8.09E201 f22 4.76E-07 4.45E-07 4.80E-07 4.67E-07 1.71E214

f11 5.49E206 6.08E-06 5.50E-06 7.57E-06 5.96E-06 f23 1.95E-03 1.96E-03 1.95E-03 1.95E-03 1.94E203

f12 3.25E-02 6.90E-02 7.39E-06 8.34E-06 7.05E206 f24 9.22E-16 7.29E-16 9.36E-16 9.23E-16 7.18E216

Bold values indicate the best value achieved among all algorithms
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variable varies from 0 to 1 as given in Bansal and Sharma

(2012). Following are the resultant cases:

1. k1 ¼ W ; k2 ¼ k3 ¼ 1�W
2
; 0�W � 1;

2. k2 ¼ W ; k1 ¼ k3 ¼ 1�W
2
; 0�W � 1;

3. k3 ¼ W ; k1 ¼ k2 ¼ 1�W
2
; 0�W � 1

The PI graphs corresponding to above cases (1), (2) and

(3) for all the algorithms are shown in Fig. 4(a),(b) and (c)

respectively where horizontal axis represents the weights

k1; k2 and k3 and vertical axis represents the PI. In case (1),

equal weights are given to AFE and ME while weight to

SR varies from 0 to 1. In case (2), SR and ME are assigned

equal weights and weight to AFE varies in range 0 to 1,

while in case (3), equal weights are assigned to SR and

AFE and weight to ME varies in range ð0; 1Þ. It can be

observed from Fig. 4 that PI of ABCGLN is much higher

than all the considered algorithms for all three cases.

Further, to compare convergence speed of ABCGLN

with respect to other algorithms, we calculated the

acceleration rate (AR) based on the AFEs, which is

defined below in Eq. (6). A smaller AFEs means higher

convergence speed. To minimize the effect of algo-

rithm’s stochastic nature, we averaged the reported

function evaluations over 100 runs for each test

problem.

AR ¼ AFEALGO

AFEABCGLN

; ð6Þ

where, ALGO is any of the algorithms ABC, BSFABC,

GABC and MABC. Table 6 shows a comparison between

ABCGLN and other considered recent modified ABC

algorithms in terms of AR. Here, AR [ 1 means ABCGLN

is faster i.e, in less number of function evaluations it

achieved the required optimum with acceptable error. It is

clear from the Table 6 that convergence speed of ABCGLN

is much better than the other considered algorithms for all

the test problems except functions f3 as it took on an

average half number of function evaluations as compare to

other algorithms.
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Fig. 3 Boxplots graph for considered algorithms on test problems f1 � f24

Table 5 Comparison of

algorithms based on the Mann-

Whitney U rank sum test at a

a ¼ 0:05 significance level and

mean number of function

evaluations, TP: Test Problem

TP Mann-Whitney U rank sum test with

ABCGLN

TP Mann-Whitney U rank sum test with

ABCGLN

ABC BSFABC GABC MABC ABC BSFABC GABC MABC

f1 ? ? ? ? f13 ? ? ? ?

f2 ? ? ? ? f14 ? ? ? ?

f3 - - - ? f15 ? ? ? ?

f4 ? ? ? ? f16 ? ? ? ?

f5 ? ? ? ? f17 ? ? ? ?

f6 ? ? ? ? f18 ? ? ? ?

f7 ? ? ? ? f19 ? ? ? =

f8 ? ? ? ? f20 ? ? ? ?

f9 ? ? ? ? f21 ? ? ? ?

f10 ? ? ? ? f22 ? ? ? ?

f11 ? ? ? ? f23 ? ? = ?

f12 ? ? ? ? f24 ? ? ? ?
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5 Conclusion

In this article, local and global neighborhood based posi-

tion update strategy is incorporated in employed bee phase

of ABC. In the proposed strategy, each employed bee gets

updated using best solutions in its local and global neigh-

borhoods as well as random members from these neigh-

borhoods. Here, local neighborhood of any solution means

the sub population around that bee based on index not

based on search space or objective space while global

neighborhood is the entire swarm for each solution.

Therefore the exploration (due to presence of local neigh-

borhoods) and exploitation (due to presence of global

neighborhood) can be well balanced. The performance of

the proposed algorithm ABCGLN has been extensively

compared with other recent variants of ABC namely,

GABC, BSFABC and MABC. Through the extensive and

statistical experiments, it can be stated that the proposed

strategy uplifted the ABC algorithm’s performance in

terms of robustness, accuracy and efficiency and hence

ABCGLN can be considered as a promising alternative

algorithm to solve a variety of optimization problems. In

future, authors will apply proposed algorithm to solve some

real world optimization problems.
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