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Spider monkey optimization (SMO) algorithm, which simulates the food searching behavior of a swarm of
spider monkeys, is a new addition to the class of swarm intelligent techniques for solving unconstrained opti-
mization problems. The purpose of this article is to study the performance of SMO after incorporating quadratic
approximation (QA) operator in it. The proposed version is named as QA-based spider monkey optimization
(QASMO). An experimental study has been carried out to check the validity and applicability of QASMO. For
validation purpose, the performance of QASMO is tested over a benchmark set of 46 scalable and nonscalable
problems, and results are compared with the original SMO algorithm. In order to test the applicability of the
proposed algorithm in solving real-life optimization problems, one of the most challenging optimization problems,
namely, Lennard—Jones (LJ) problem is considered. LJ clusters containing atoms from three to ten have been taken
into consideration, and results are presented. To the best of our knowledge, this is the first attempt to apply SMO
and its proposed variant on a real-life problem. The results demonstrate that incorporation of QA in SMO has
positive effects on its performance in terms of reliability, efficiency, and accuracy.
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NOMENCLATURE

N swarm size

D no. of dimensions

U(a,b) uniformly generated random number between a and b

NG number of groups in the current swarm

MG maximum number of groups allowed in the swarm

Pr perturbation rate

GS[k] number of members in the kth group

G/[k] 0] index of the first member of the kth group in the swarm

Glk][1] index of the last member of the kth group in the swarm

SM; position vector of the i th spider monkey in the swarm

SM pew a trial vector for creating a new position of a spider monkey

S M pewlocal a trial vector for creating a new position of a spider
monkey in local leader phase

SM newglobal a trial vector for creating a new position of a spider
monkey in global leader phase

SM, position vector of randomly selected member of the group

S M worstglobal position vector of worst member of the swarm in global
leader learning phase

S M worstlocal position vector of worst member of a group in local leader

learning phase
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LL; position vector of local leader of the kth group
GL position vector of global leader of the swarm
SMuminj lower bound on the jth decision variable
SMmax j upper bound on the jth decision variable

smij Jj th decision variable of the i th spider moneky
fit; fitness of the position of the i th spider monkey
maxfit best fitness value

prob; probability of the position of the i th spider monkey
GLIt global leader limit

LLIt local leader limit

GLC limit count of global leader

LLCy limit count of local leader of the kth group

1. INTRODUCTION

Although various stochastic algorithms such as genetic algorithms (GA) (Holland
1975), controlled random search (Price and Szego 1978), particle swarm optimization (PSO)
(Kennedy and Eberhart 1995), differential evolution (DE) (Storn and Price 1997), artificial
bee colony (Karaboga 2005), ant colony optimization (Dorigo 1992), biogeography-based
optimization (Simon 2008), harmony search algorithm (Yang 2009), bacterial foraging opti-
mization (Passino 2002), and so on have shown good performance in solving real-world
optimization problems, yet in view of no free lunch theorem by Wolpert and Macready
(1997), there is no such algorithm, which can give better performance than other algo-
rithms on all the optimization problems. That is, there is no universally accepted algorithm
for all the optimization problems. Some algorithms perform better than others on some
set of problems, while others perform better on some different set of problems. Thus,
research on developing optimization algorithms, which can perform better on majority of
the optimization problems of interest, goes on.

Spider monkey optimization (Bansal et al. 2014) is a new swarm intelligent technique
inspired by the food searching strategy of spider monkeys for solving global optimization
problems. Like any other swarm intelligent technique, SMO starts with the initialization
of few control parameters and randomly generated solutions. The potential solutions of the
swarm are represented by position of spider monkeys in the swarm. Spider monkeys update
their position with each passing generation according to the updation criterion to explore and
exploit different regions of the search space to obtain near-optimal solution. In SMO, every
new position generated for a spider monkey by position update process is compared with
the old position, and the better one is adopted. Also, SMO has been designed in such a way
that it has the ability to handle two of the major problems of swarm intelligent techniques,
that is, premature convergence and stagnation, in an efficient manner. Since its inception,
only one modified version of the original SMO has been proposed (Kumar et al. 2014). In
the first article of SMO (Bansal et al. 2014), it has been shown by numerical and statistical
results that SMO is a strong competitor of some state-of-the-art algorithms (Storn and Price
1997; Karaboga 2005; Clerc 2012; Hansen and Ostermeier 1996).

The present article introduces a new variant of original SMO after implementing
quadratic approximation (QA) operator in it with an objective to improve its local search
ability. QA provides the minimum of the quadratic curve passing through three feasible
solutions in the search space. The motivation for applying QA in SMO comes from its
successful incorporation in various stochastic search techniques such as controlled random
search, GA, PSO, DE, and so on in the past few years. The same operator is used with the
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name QA in some papers and with quadratic interpolation (QI) in others, which is avail-
able in the literature. In the present article, it has been used with the name QA operator. QA
has been implemented in different metaheuristics in different ways. In Mohan and Shanker
(now Deep) (1994), QA has been used in the local phase of random search technique to
replace worst feasible solution of the population. In Pant et al. (2007), QA has been used
as a nonlinear crossover operator to produce an offspring from three feasible solutions say
two randomly selected particles and best particle of the swarm. In Deep and Das (2008),
QA has been used as an additional operator in GA. After every cycle of GA operators is
completed, QA operator has been used to gain local refinements. In Deep and Bansal (2009),
QA has been used with two variants of PSO, namely, PSO-W (PSO with time varying iner-
tia weight) and PSO-C (PSO with constriction factor). In Pant et al. (2009), QA named as
QI has been used to initialize the population in DE algorithm. In Liu et al. (2014), QI has
been used with global version of orthogonal learning-based PSO (QIOLPSO-G).

In the present article, QA has been applied to make efficient use of the available infor-
mation about the current global best and local best solutions. The neighborhood of these
solutions have been searched for better solutions using QA operator. Investigation has been
made on the performance of the proposed algorithm by testing it over a set of benchmark
problems, and results are compared with that of the original SMO. The proposed algorithm
and experimental results have been discussed in detail in the next sections.

The article is organized as follows. Section 2 presents the social behavior and food
searching strategy of spider monkeys followed by description of SMO algorithm. In
Section 3, QA operator and its implementation in SMO has been discussed. Section 4 pro-
vides the experimental setup followed by experimental results and discussion in Section 5.
In Section 6, application of SMO and the proposed algorithm on the Lennard—Jones (LJ)
cluster problem has been discussed. Finally, the article has been concluded with future scope
in Section 7.

2. SPIDER MONKEY OPTIMIZATION
A detailed description of SMO has been given in the succeeding sections.

2.1. Motivation

Spider monkey optimization algorithm is inspired from the foraging and social behav-
ior of spider monkeys. Spider monkeys are social animals which live in a group of 40-50
individuals. Their food searching strategy make them fall into the category of fission—fusion
social structure-based animals. The animals of this category divide themselves into sub-
groups to forage at different places and then recombine to share the collected food. A female
leader is responsible for the food availability of group members. In case if she does not find
enough food for the group, she divides the group into subgroups. These subgroups forage in
different directions during day time and night time, and they all gather at a common place to
share their collected food. Based on the intelligent swarming behavior and food searching
strategy exhibit by spider monkeys swarm, SMO technique has been developed.

2.2. Spider Monkey Optimization Technique

Spider monkey optimization, like all other swarm intelligent techniques, is inspired
from the food searching behavior of living creatures. In SMO, food searching strategy of spi-
der monkeys is simulated to develop this optimization technique. In addition to initialization
of the swarm, SMO has six iterative steps, namely, local leader phase, global leader phase,
global leader learning (GLL) phase, local leader learning (LLL) phase, local leader decision
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phase, and global leader decision phase. There are four control parameters of SMO, namely,
perturbation rate (Pr), maximum number of groups (MG), global leader limit (GLIt), and
local leader limit (LLIf) . Their details and use in different phases has been discussed in the
following paragraphs. The key point of SMO is that it has been designed in such a manner
that it can handle the problem of stagnation and premature convergence, which are two of
the most severe problems faced by metaheuristics, in a very efficient manner. GLIt and LLIt
keep check on stagnation in the whole swarm and in the local groups, respectively, and pre-
vents premature convergence by taking necessary steps described in GLD phase and local
leader decision phase.

Before the description of each step of the algorithm in detail, here are some of the terms,
which have been used during iterative steps in different phases. A D-dimensional trial vector
8aY SM yew = (SMpew1SMnew2, - - - , SMpewp) fOr creating a new position of a spider monkey.
LLp = (Ilp1lls, ..., 1¢p) is the position of the local leader of the kth group and GL =
(gl,gl,,...glp) is the position of the global leader of the entire swarm. Also, it should
be noted that updation in the position of a spider monkey is carried out dimensionwise. If
during updation process, the value of a decision variable is out of predefined limits (lower
and upper bounds), then the value of that decision variable can be set to the predefined limit
or randomly between the predefined limits

Detailed description of each phase is given as follows:

2.2.1. Initialization of the Swarm.  During initialization of the swarm, SMO generates
a uniformly distributed D-dimensional initial positions vectors of N spider monkeys. The
position SM; = (smj1,Sm;a,...,sm;p) of ith spider monkey is initialized as follows:

SMj = SMyinj +U(0, 1)X(SMmaxj— SMminj) Where i =1,2,...,Nand j=1,2...,D (1)

2.2.2. Local Leader Phase. In this phase, a new trial position say SM pewiocal =
(SMpewl1 SMpewl2, - - - » SMnewip) 18 generated for each spider monkey based on the informa-
tion of its current position, local leader’s experience, and local group members’ experience.

Pseudocode of position update process in this phase is given in Figure 1. In Figure 1,
SM, = (smpSmy2,...5m,p) is the position of the randomly selected member of the
current group. Although it is a randomly selected member of the group, yet it should be
different from the member of the group that has to be updated. The amount of change in the
current position depends on the perturbation rate. It can be observed from the pseudocode of
the phase that the higher the perturbation rate, less change will be possible and the lower the
perturbation rate, more change is possible. Thus, perturbation rate should be chosen wisely
to control exploration and exploitation in different iterations. The fitness value of the newly
generated position of the ith spider monkey is compared with that of its old position. If the
fitness of the newly generated position is higher than that of old position, then the spider
monkey updates his position with the new one, otherwise it retains its old position.

2.2.3. Global Leader Phase. 1In this phase, like local leader phase, a new trial position
say SM newglobal = (SMnewg1 SMnewg2s - - - » SMnewgn) 1S created for each spider monkey. But
here, in place of the local leader, the experience of the global leader is used in addition to
the experience of the current member and local group members’ experience. In this phase, a
spider monkey gets a chance to update its position based on its probability, which is directly
proportional to the fitness of its current position.

The probability of the ith spider monkey in the swarm has been calculated using the
following expression:
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begin:
for k= 1:NG do
for i=G/k][0]:G[k][1] do
for j=1:D do
if U(0, 1) > Pr then
SMpew; = smy; + U(0,1) X (llkj - smij) + U(—1,1) X (sm,; — sm;)
else
SMpewj = SM;j
end if
end for
if (fit(SMew )>1it(SM;))
SM; = SMpey
end if
end for
end for
end

FIGURE 1. Pseudocode for local leader phase.

begin:
for k = 1:NG do
count=1;

while count < GS/k/ do
for i= G/ k][0]:G[k][1] do
if (U(0, 1) < probl[i]) then
count = count + 1.
Randomly selectj € {1...D}.
Randomly select SM,. from kth group s.t. r I=1.
SMyewj = smyj + U(0,1) x (glj - smi,-) +U(=1,1) X (sm,; — sm;;)
end if
If(fit(SMnevw)>1it(SM;))
SMi = SMneW
end if
end for
if (i==G/k][1]) then
i=G[k][0]
end if
end while
end for
end

FIGURE 2. Pseudocode for global leader phase.

prob; = 0.9 % (ﬁL) +o.1 )

maxfit

Pseudocode for position update process of global leader phase is given in Figure 2.

From the update process in this phase, it is clear that spider monkeys having higher fit-
ness values possess better chance to improve their position as compared with other members
of the swarm

2.2.4. Global Leader Learning Phase. In this phase, position of the global leader is
updated by applying greedy selection in the swarm. A spider monkey whose position is
having best fitness value will be updated as global leader of the swarm. This phase has
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begin :
//update position of the global leader of the swarm by applying greedy selection
if(position of global leader is updated from previous position) then
GLC=0
else
GLC=GLC+1
end if
end

FIGURE 3. Pseudocode for global leader learning phase.

begin:
for k=1:NG do
/Jupdate position of the leader of the group
if(position of local leader is updated from previous position) then
LLCx=0
else
LLC,=LLCy + 1
end if
end for
end

FIGURE 4. Pseudocode for local leader learning phase.

begin:
for k = I:NG do
if (LLC,> LLIt) then
LLC, =0
for i=G/[k][0]:G[k][1] do
for j=1:D do
if (U(0, 1) > Pr) then
SMyj = SMpinj + U(0,1) x (Smmaxj - Smminj)
else
smy; = smy; + U(0,1) x (gl; — smy;) + U(0,1) X (smy; — Uy;)
end if
end for
end for
end if
end for
end

FIGURE 5. Pseudocode for local leader decision phase.

been described in Figure 3. After the updation of the global leader, it is checked whether
the position of the global leader has been changed or not. GLC records how many times
position of the global leader has not been updated since the last updation.

2.2.5. Local Leader Learning Phase. In this phase, the position of every local leader
is updated by applying greedy selection in that group. A spider monkey whose position
is having the best fitness value in the group will be updated as local leader of the group.
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begin:
if (GLC > GLlIt) then
GLC=0
if NG < MG) then
NG=NG+1
else
NG=1
end if
Apply Local leader learning phase
end if
end

FIGURE 6. Pseudocode for global leader decision phase.

begin:
Initialize the swarm using equation (1)
Initialize LLIt, GLIt, Pr, MG
Iteration=0
Calculate fitness value of the position of each spider monkey in the swarm
Select Global Leader and Local Leaders by applying Greedy Selection
while (termination criterion is not satisfied) do
//Local Leader Phase
//Calculate Probabilities
//Global Leader Phase
//Global Leader Learning Phase
//Local Leader Learning Phase
//Local Leader Decision Phase
//Global Leader Decision Phase
Iteration = iteration +1
end while
end

FIGURE 7. Pseudocode for spider monkey optimization.

Description about this phase is shown in Figure 4. L L C, records how many times position
of the local leader of the kth group has not been updated since the last updation.

2.2.6. Local Leader Decision Phase. Local leader limit is an important control
parameter associated with every local leader and helps them to take important decision
regarding the group. It is predefined and checks stagnation in the group. If the position of
the local leader of a particular group is not updated within the LLIt, then all the members of
the group will be reinitialized. Reinitialization process is given in Figure 5.

2.2.7. Global Leader Decision Phase. Global leader limit is also a control parameter
of SMO. It is associated with global leader of the swarm and helps to check stagnation in
the whole swarm. Like LLIt, it is also predefined. If the position of the global leader is not
updated within a GLIt, then the swarm is divided into groups to start the search in different
directions. But there is a limit on the number of groups in which the whole swarm can
be divided. This limit is defined by the control parameter named as maximum number of
groups. It is also predefined. If there are already maximum number of groups in the swarm,
then all the groups get merged into a single group and the division of groups repeats. This
procedure has been given in Figure 6.

Pseudocode of SMO is given in Figure 7.
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3. QUADRATIC APPROXIMATION-BASED SMO

3.1. Working of QA

Quadratic approximation has been incorporated in the basic version of SMO with
the objective to improve its local search ability. QA provides the point of minima of the
quadratic curve passing through three solutions. QA works in the following manner.

First, three feasible solutions say, A(aias,...,ap) with the best fitness value,
B(b1by,...,bp) and C(cica,...,cp) are randomly chosen such that A, B, and C all
are distinct. Then a new solution P(p1pa,..., pp), which is the point of minima of the
quadratic curve passing through A, B, and C is given by

N G R R ) FA IR ) LS N
PUI = 2 (bj_cj)f(A)+(Cj—aj)f(B)+(aj_bj)f(C) J =1 ,,(3)

where f(A), f(B), and f(C) are the values of objective function f at A, B, and C,
respectively.

3.1.1. Implementation Strategy of QA in SMO. QA has been implemented in the GLL
phase and the LLL phase. In GLL phase, the three solutions will be two randomly selected
members from the swarm in addition to the global leader. In LLL phase, these three solutions
will include the local leader of the group and two randomly selected members from the
same group. The reason for selecting these two phases for incorporating QA is that in these
two phases, we obtain updated position of global and local leaders and the probability of
obtaining better solutions in the neighborhood of good solutions is higher as compared with
other solutions. Modified GLL phase and modified LLL phase has been described in detail
in the next paragraphs.

In modified GLL phase, first, the position of the global leader of the swarm is updated.
Now, the position say SM yorsiglobal Of the worst member (solution having the minimum
fitness value) of the swarm is found. Then, solutions are generated using QA for a predefined
number of times till we obtain a solution, which is better than the worst member of the
swarm. For this, we choose three points A, B, and C from the swarm, where A = GL, and B
and C are positions of randomly chosen members of the swarm such that A, B, and C are all
distinct. Generate a new position using equation (2). If the fitness value of a newly generated
position is better than that of the worst member of the group, then update the worst position
with a new one. Pseudocode for this modified phase is given in Figure 8.

In modified local leader learning phase, the process described in the aforementioned
paragraph repeats itself for every group. Here, the whole swarm is replaced by a particular
group, and the global leader is replaced by a local leader. Figure 9 provides pseudocode of
position update process in this phase.

4. EXPERIMENTAL SETUP

4.1. Benchmark Set

In the field of nature-inspired algorithms, it is a common practice to test and com-
pare the performance of different algorithms over a benchmark set. An effort to define a
benchmark set such that a particular algorithm performs better than other algorithms in
all the problems in the benchmark set under consideration is of less importance. Rather, a
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begin:
Update the position of the global leader in the swarm
find SMworstglobal
for i=1:1000 do
//Select A= GL, B and C are positions of randomly chosen members of the
swarm  such that A, B, C all are distinct
//generate P using equation (3)
if (ﬁt(P)>ﬁt(SMwarstglabal))

SMworstglobal =P
Terminate the loop
end if
end for
if(fit(P)>fit(GL))
GL=P
end if
If(position of global leader is updated from previous position) then
GLC=0
else
GLC=GLC+1
end if

end

FIGURE 8. Pseudocode for the modified global leader learning phase.

begin:
for k=1:NG do
Update the position of the local leader in the swarm
find SMyorstiocal
for i=1:1000 do
//Select A = LL, , B and C are positions of randomly chosen members of the
groups such that A,B,C all are distinct
//generate P using equation (3)
if(ﬁt(P)>ﬁt(SMworstlocal))
SMwarstlacal= P
Terminate the loop
end if
end for
if (fit(P)>fit(LLy))
LL,=P
end if
if (position of local leader is updated from previous position) then
LLC, =0
else
LLCy = LLCy+ 1
end if
end for
end

FIGURE 9. Pseudocode for the modified local leader learning phase.

benchmark set should be chosen in such a way to include problems of mixed characteris-
tics so that it becomes easier to make a conclusion about the type of problems in which a
particular algorithm performs better than the other algorithms. Problems with varying char-
acteristics helps in exploring the strengths and weaknesses of an algorithm. For example,
unimodal problems are considered to check the convergence speed of an algorithm. Multi-
modal problems are included to test algorithm’s ability to escape the trap of local minimas.
Problems with flat surfaces are considered to judge algorithm’s search ability in the absence
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of guiding search directions. In order to check the performance of the proposed algorithm
QASMO, experiments have been performed over a large set of 46 benchmark problems. In
this benchmark set, in addition to all the 26 benchmark problems from the paper of original
SMO (Bansal et al. 2014), some additional benchmark problems from the literature have
also been considered for an extensive analysis of the performance of the proposed algo-
rithm. This benchmark set is large enough to include problems having objective functions of
different characteristics such as unimodal, multimodal, separable, nonseparable, discontin-
uous, and so on. This benchmark set is broadly divided into two categories, namely, scalable
and nonscalable problems. Out of these 46 problems, the first 30 problems are scalable, and
the rest of the problems are nonscalable. All the problems are of minimization type. List of
problems along with their search range and objective function is provided in the Appendix.
For scalable problems, lower and upper bounds on the decision variables are the same for
each dimension of the solution. Also, lower and upper bounds of each decision variable are
the same in nonscalable problems except in the two cases: problem nos. 32 and 36.

4.2. Implementation, Parameter Setting, and Termination Criterion

Spider monkey optimization and QASMO have been implemented in C. A total of 100
independent runs have been performed for each SMO and QASMO. Every run starts with a
different initial swarm. To make sure that both the algorithms obtain the same initial swarm
in every run, the same seed has been used by both the algorithms to start the same run.

Parameter setting for both the algorithms is the same to make a fair comparison in
their performance. Performance of an algorithm largely depends on fine tuning of param-
eters. Fine-tuning of parameters means finding the most appropriate values of the control
parameters of an algorithm. The difficulty of selecting these parameters increases with the
increase in the number of problems in the benchmark set because of the presence of differ-
ent types of objective functions. Thus, finding a common set of parameters is a challenging
and necessary task in an algorithm.

Out of the four control parameters (pr, MG, LLIt, and GLIt), parameter setting for the
three control parameters (pr, MG, and GLIt) has been adopted from the original article
of SMO (Bansal et al. 2014). Local leader limit has been set to 100 instead of 1500 to
encourage more exploration. Also, the swarm size has been taken 150 in this article in place
of the swarm size, which is 50 in Bansal et al. (2014) to have a better exploration of the
search space. In the original article of SMO, acceptable error for each benchmark problem
is different, and the reason of choosing them differently is not specified. Thus, to maintain
some uniformity in the termination criterion, the same acceptable error has been defined for
each benchmark problem in the benchmark set. Following parameter setting and termination
criterion is adopted for experiment:

Swarm size (fixed) =150

Perturbation rate (pr) (changing with iterations) = linearly increasing ([0.1, 0.4])
Maximum number of groups (MG) (fixed) =5

Local leader limit (fixed) = 100

Global leader limit (fixed) = 50

Total number of runs =100

Maximum number of iteration = 4000

acceptable error =1.0e-05

Stopping criterion = either maximum number of iterations are executed or acceptable
error is achieved (whichever is obtained earlier)
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5. EXPERIMENTAL RESULTS AND DISCUSSION

Performance of QASMO is investigated over a benchmark set of 46 problems including
both scalable and nonscalable problems, and results are compared against original SMO.
Comparisons have been made on the basis of reliability, efficiency, and accuracy. Reliability
is measured in terms of number of successful runs out of fixed number of independent runs.
A run is considered to be successful if error value of the global leader is less than or equal
to the acceptable error, which is set to be 1.0e-5 here. Error value is the absolute difference
between the global best value obtained and the optimal value of the problem. If a run is
successful for a particular problem, the problem is said to be solved in that particular run.
Efficiency is measured in terms of average number of function evaluations for successful
runs, and accuracy is the degree of precision in locating the global optima, and it is measured
in terms of error values obtained in all the runs. For this purpose, the number of successful
runs out of the total number of independent runs, the average number of function evaluations
of successful runs, and the best, average, and worst of the error values obtained in 100
independent runs have been recorded. Results of scalable and nonscalable problems have
been discussed separately followed by overall conclusion of the performance of both the
algorithms on both scalable and nonscalable problems. In order to test the scalability of the
proposed algorithm, results of scalable problems have been recorded for 30 dimensions and
50 dimensions.

Results of both the algorithms have been analyzed in two ways. First, the impact of QA
operator in SMO has been studied individually in terms of the number of successful runs,
the average number of function evaluations for successful runs, and the best, average and
worst of error values obtained in 100 runs. For this purpose, two comparison criteria have
been defined.

Criterion 1 is used to compare the reliability and efficiency of both the algorithms.
Comparison according to this criterion has been made on the basis of the following
information:

e Number of successful runs out of 100 runs; and
® Average number of function evaluations of successful runs.

Solving a problem is important, so the first or higher preference is given to number of
successful runs. The criterion is only applied when at least one of the algorithms is said to
have positive number of successful runs.

There can be three cases:

Casel: When both the algorithms have different number of successful runs.
In this case, algorithm with more number of successful runs is the winner and is
said to perform strictly better than the other.

Case 2: When both algorithms have the same number of successful runs and different
number of function evaluations for successful runs.
In this case, algorithm with less number of average function evaluations for
successful runs is said to perform better than the other.
Also, to further investigate the significance in the difference of average number of
function evaluations of successful runs in this case, z-test at a significance level
of 0.05 has been applied ; the symbol “=" indicates there is no significant
difference between the average of function evaluations of two algorithms and the
symbols “+” and “—* indicate that QASMO performs significantly better and
worse than SMO, respectively.
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Case 3: In extreme case, where both the algorithms have the same number of successful
runs as well as the same number of average function evaluations of successful
runs, both the algorithms are considered equivalent.

Criterion 2 is employed to compare the accuracy of both the algorithms. Comparison
has been done on the basis of following:

e Best, average, and worst of the error values obtained in 100 runs
Following cases are possible for comparison:

TABLE 1. Number of successful runs out of 100 independent runs and average number of function
evaluations for successful runs for SMO and QASMO (scalable problems — 30 dimensions).

Number of successful runs Average number of function
(out of 100 runs) evaluations of successful runs

Problem number SMO QASMO SMO QASMO
1 100 100 33,192 30,626
2 100 100 26,566 23,254
3 100 100 103,625 407,833
4 0 0 ~ ~

5 100 100 229,495 1,176,179
6 100 100 63,917 59,159
7 100 100 189,827 85,764
8 100 100 24,027 56,411
9 100 100 37,701 33,967
10 100 100 25,421 23,371
11 47 100 650,570 218,639
12 100 100 8,502 53,700
13 100 100 32,220 29,952
14 100 100 62,664 58,450
15 0 0 ~ ~

16 100 100 38,287 35,335
17 0 0 ~ ~

18 100 100 14,002 11,860
19 100 100 22,628 20,988
20 0 0 ~ ~

21 7 42 1,051,267 5,794,852
22 83 100 354,061 764,419
23 100 100 48,381 44,862
24 100 100 30,839 27,865
25 100 100 30,695 30,961
26 100 100 39,151 36,457
27 100 100 44,665 41,482
28 0 0 ~ ~

29 100 100 106,373 563,615
30 100 100 63,980 59,646

Better entries are shown in bold.
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Case 1 : When an algorithm, say A, has all the three (best, average, and worst) values
less than the other algorithm, say B, then algorithm A is said to be strictly better
than algorithm B.

Case 2 : When best and average error values of A are strictly less than those of B, and the
worst error value of A is equal to that of B, then A is said to perform better then B.

Case 3:  When both A and B have the same best, average, and worst error values, then both
A and B are said to be equivalent.

The second method of analysis is to compare the relative performance of two algorithms
on the basis of performance indices (PIs) by giving weighted importance to the number
of successful runs, the average number of function evaluations of successful runs and the
average of error values.

The formula for calculating the values of PIs for both the algorithms have been given as

1 Np . . .
Pl = N_P i=1 (klall +k20112+k3055)
i — Srl
where o} = T
i ML ifsri >0
0y = Af )
0 if Sr' =0
. Mel  if o
ol = ac 1'ferr. >0
1 iferrt =0
i=1,2,...,Np
S r’: number of successful runs of the i th problem
Tr! ' total number of runs of the ith problem
Mf! minimum of average number of function evaluations of successful runs used
_ by both the algorithms for obtaining the solution of the i th problem
Af! average number of function evaluations of successful runs used by

TABLE 2. t-test results for problems having identical number of successful
runs for SMO and QASMO (scalable problems — 30 dimensions).

Problem number Sign Problem number Sign

14
16
18
19
23
24
25
26
27
29
30

_I_
_I_

03N L W~

12
13

T e [ e

O
A+t
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an algorithm for obtaining solution of the ith problem

Me' minimum of the average of error values of the ith problem obtained by both
' the algorithms in total number of runs
Aé average of error values of the ith problem obtained by an algorithms in total

number of runs
error value of the ith problem

err!

Np total number of problems evaluated

k1, k>, and k3 are the weights corresponding to total number of successful runs, the average
number of function evaluations of successful runs, and the average of error values such that

TABLE 3. Best, average, and worst of error values obtained in 100 independent runs (scalable problems

—30 dimensions).
Best Average Worst
Problem number SMO QASMO SMO QASMO SMO QASMO
1 6.01E-06  6.56E-06 8.72E-06  8.72E-06  9.99E-06  9.98E-06
2 3.12E-06 4.91E-06 8.03E-06  7.85E-06 9.99E-06  9.83E-06
3 3.70E-06  2.06E-18  8.52E-06  8.52E-06  9.99E-06  9.99E-06
4 1.57E-02 1.74E-03 1.63E+01 7.90E+00 8.08E4+01 2.08E4-01
5 2.17E-06 1.14E-13 8.42E-06  7.36E-06 9.97E-06  9.97E-06
6 7.58E-06  7.92E-06 9.43E-06 9.28E-06  9.98E-06 9.98E-06
7 7.68E-06  7.32E-06 9.36E-06  9.26E-06 9.99E-06 1.00E-05
8 7.54E-09 1.46E-07 5.11E-06  4.99E-06 9.98E-06 9.97E-06
9 6.42E-06  4.44E-16  8.92E-06 8.41E-06 9.99E-06 1.00E-05
10 5.15E-06  6.30E-06 8.85E-06  8.70E-06 1.00E-05 1.00E-05
11 7.36E-06  7.24E-06 4.17E4-00 9.32E-06 4.62E+01 1.00E-05
12 5.62E-06 5.97E-06  8.74E-06 8.81E-06 9.98E-06  9.99E-06
13 5.87E-06  5.76E-06  8.71E-06  8.81E-06 9.99E-06  9.94E-06
14 7.44E-06  7.52E-06  9.30E-06  9.33E-06 9.99E-06  9.99E-06
15 2.00E-01 9.99E-02 5.85E-01 4.84E-01 1.05SE+01 4.11E+00
16 5.36E-06  S5.01E-06 8.63E-06 8.77E-06 9.99E-06  9.98E-06
17 9.38E-03  5.03E-01 1.49E+00 2.10E400 8.67E400 7.75E4-00
18 2.74E-06 1.34E-06  7.60E-06  6.77E-06  9.97E-06  9.98E-06
19 0.00E+00 0.00E+00 0.00E400 0.00E4-00 0.00E+00 0.00E+00
20 7.73E4+00 6.86E4+00 9.73E4-00 8.59E400 1.22E+01 1.43E4-01
21 7.78E-06  0.00E4+00 1.34E400 2.10E+00 4.73E+00 1.61E401
22 7.58E-08  3.63E-08 1.54E4+02 4.89E-06 1.45E404 9.89E-06
23 6.17E-06  6.21E-06 8.60E-06  8.44E-06 9.93E-06  9.98E-06
24 6.17E-06  4.38E-06  8.77E-06  8.74E-06  9.99E-06 9.99E-06
25 598E-06  7.29E-08  8.78E-06  8.50E-06 1.00E-05 9.98E-06
26 597E-06 4.77E-06  8.80E-06  8.68E-06  9.99E-06  9.99E-06
27 5.67E-06 5.47E-06 8.79E-06  8.51E-06 1.00E-05  9.99E-06
28 1.24E405 1.20E+05 1.91E4+05 1.86E+05 241E405 2.40E+05
29 3.94E-06  4.80E-06 8.67E-06  8.66E-06 9.97E-06  9.99E-06
30 7.83E-06 7.89E-06 9.42E-06  9.33E-06  9.99E-06 1.00E-05

Better entries are shown in bold.
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0 <ki,ky, ks <landk; + kp + k3 = 1. As given in Deep and Thakur (2007), two equal
weights are assigned to two variables keeping the third variable to vary from 0 to 1.
Possible cases are given by

(i)k1=W,k2=k3=1_Tw ., 0<sw<=<1
(ii)kzzw,klzky,:l_Tw ,0<w<1
(i) ks=w.ky =k =15%2 |, 0<w=1

In case (i), the average number of function evaluations of successful runs and the aver-
age of error values have been given equal weights. In case (ii), the number of successful runs

TABLE 4. Number of successful runs out of 100 independent runs and average number of function
evaluations for successful runs for SMO and QASMO (scalable problems — 50 dimensions).

Number of successful runs Average number of function
(out of 100 runs) evaluations of successful runs

Problem number SMO QASMO SMO QASMO
1 100 100 56,858 51,289
2 100 100 50,558 43,152
3 100 100 113,365 210,051
4 0 0 ~ ~

5 100 96 451,232 2,775,798
6 100 100 106,761 96,231
7 95 100 543,832 192,245
8 100 100 14,352 22,720
9 100 100 88,981 93,920
10 100 100 43,824 39,398
11 0 100 ~ 555,888
12 100 100 99,214 9,404
13 100 100 55,784 50,768
14 100 100 106,692 96,945
15 0 0 ~ ~

16 100 100 67,096 60,459
17 0 0 ~ ~

18 100 100 25,427 18,034
19 100 100 41,238 38,972
20 0 0 ~ ~

21 0 0 ~ ~

22 80 100 339,593 814,104
23 100 100 83,926 75,603
24 100 100 54,562 49,861
25 100 100 53,508 61,011
26 100 100 70,121 63,906
27 100 100 75,557 68,645
28 0 0 ~ ~

29 100 100 101,583 328,982
30 100 100 106,871 96,701

Better entries are shown in bold.
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TABLE 5. t-test results for problems having identical number of successful
runs for SMO and QASMO (scalable problems — 50 dimensions).

Problem number sign Problem number sign
1 + 16 +
2 + 18 +
3 — 19 =
6 + 23 +
7 + 24 =
9 = 25 =
10 + 26 +
12 + 27 +
13 + 29 —
14 + 30 +

and the average error values have been given equal weights, and in case (iii), the number
of successful runs and the average number of function evaluations have been given equal
weights. In the figures of PI, horizontal axis displays the weight varying from 0 to 1, and
vertical axis displays the PI varying from 0 to 1.

Here is the brief description of how the results have been organized in tables and in
figures for comparison for both scalable and nonscalable problems.

Tables 1-3 present the numerical and statistical results for scalable (1-30) problems for
30 dimensions , Tables 46 present the numerical and statistical results for scalable (1-30)
problems for 50 dimensions, and Tables 7-9 present the numerical and statistical results for
nonscalable (31-46) problems. Better entries appear in bold. Figures 10—12 show PI graphs
of scalable problems for 30 dimensions, Figures 13—15 show PI graphs of scalable problems
for 50 dimensions, and Figures 16—18 show PI graphs of nonscalable problems.

There are 30 scalable problems in the benchmark set. Discussion of results of scalable
problems of 30 dimensions is given in the succeeding discussions.

From Table 1, it is observed that out of 30 problems, SMO has 100 successful runs in 22
problems, while QASMO has 100 successful runs in 24 problems. In problem nos. 11, 21,
and 22, QASMO performs strictly better than SMO in criterion 1. Out of the 22 problems
where both the algorithms have identical number of successful runs (100 successful runs),
QASMO performs better than SMO in 17 problems according to criterion 1. ¢-test result
for average number of function evaluations of successful runs of both the algorithms for the
problems having identical number of successful runs has been given in Table 2. Also, it can
be observed in Table 1 that QASMO has more number of successful runs than SMO in prob-
lem nos. 21 and 22 although it comes at the cost of more number of function evaluations.
Five problems (nos. 4, 15, 17, 20, and 28) are not solved by any of the two algorithms.

Table 2 provides #-test results for the average number of function evaluations of suc-
cessful runs for the problems where both the algorithms have identical number of successful
runs. ¢-test results convey that there is a significant difference in the average number of func-
tion evaluations in 21 problems out of 22 problems. QASMO performs significantly better
than SMO in terms of convergence speed in 17 problems.

To check the solution quality obtained by both the algorithms, best, average, and worst
of the error values have been provided in Table 3. For best error values, QASMO is better
than SMO over 18 problems, and in problem no. 19, both the algorithms have the same error
value. For average error values, QASMO is better than SMO over 21 problems, and there are
three problems where both QASMO and SMO have the same average error. For worst error
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TABLE 6. Best, average, and worst of error values obtained in 100 independent runs (scalable problems —
50 dimensions).

Best Average Worst

Problem number SMO QASMO SMO QASMO SMO QASMO

1 6.41E-06  7.15E-06  9.17E-06  9.20E-06  9.99E-06 1.00E-05
2 5.73E-06  3.18E-06 8.63E-06 8.74E-06 9.96E-06  9.98E-06
3 6.26E-06  7.62E-06  9.09E-06  9.17E-06 1.00E-05  9.99E-06
4 1.25E4+00 2.26E-03  4.72E4+01 4.38E+4+01 1.57E+02 1.41E402
5 3.02E-06  1.30E-11  8.45E-06 2.26E400 1.00E-05 1.70E+02
6 8.14E-06  7.96E-06  9.60E-06  9.55E-06 1.00E-05 1.00E-05
7 8.32E-06  7.88E-06 1.37E-03  9.49E-06  7.20E-02  9.99E-06
8 1.62E-08  6.14E-08  5.19E-06  S.03E-06 9.99E-06  9.96E-06
9 1.78E-06  1.78E-15  8.97E-06  6.61E-06 1.00E-05  9.99E-06
10 741E-06  7.28E-06  9.25E-06  9.14E-06  9.99E-06 1.00E-05
11 7.52E-05  8.52E-06 3.51E-01 9.73E-06  3.15E4+01 1.00E-05
12 6.62E-06  6.41E-06 9.19E-06  9.04E-06 9.98E-06  9.98E-06
13 6.98E-06  5.69E-06 9.15E-06 9.18E-06 9.99E-06  9.98E-06
14 8.50E-06  8.22E-06  9.55E-06  9.52E-06 1.00E-05 1.00E-05
15 3.00E-01 2.00E-01 1.01E4+00 1.23E+00 1.41E+01 1.44E401
16 7.15E-06  6.10E-06  9.10E-06  9.05E-06 9.98E-06 9.99E-06
17 1.65E4+-00 3.61E+00 S5.37E+00 6.25E400 9.53E4-00 1.08E+01
18 1.76E-06  2.53E-06  7.54E-06  7.08E-06 9.95E-06 9.96E-06
19 0.00E4+00 0.00E+00 0.00E4+00 0.00E4+00 0.00E+00 0.00E+00
20 1.75E4+01 1.37E401 1.98E+01 1.67E+01 6.90E+401 4.26E4-01
21 1.88E4+-00 239E+00 S5.58E+00 5.81E400 232E401 2.17E401
22 1.16E-07  7.75E-08  6.48E+402 4.55E-06 6.30E+04 9.94E-06
23 6.85E-06  6.46E-06 9.21E-06 8.95E-06 9.99E-06 1.00E-05
24 6.59E-06  3.18E-06 9.10E-06  9.06E-06 1.00E-05  9.99E-06
25 6.32E-06 5.42E-08 9.09E-06  8.51E-06  9.99E-06 1.00E-05
26 7.14E-06  6.44E-06 9.11E-06 8.99E-06 9.94E-06 1.00E-05
27 7.08E-06  5.98E-06 9.07E-06 9.08E-06  9.99E-06  9.98E-06
28 9.15E4+07 8.17E407 1.22E+08 123E408 1.56E4+08 1.54E4-08
29 2.61E-06 5.95E-06 9.07E-06  8.92E-06  9.98E-06 1.00E-05
30 8.20E-06  8.40E-06  9.51E-06  9.51E-06  9.99E-06  9.99E-06

Better entries are shown in bold.

values, QASMO is better than SMO over 13 problems, and both algorithms have the same
worst error value on eight problems. There are 12 problems in total where the performance
of QASMO is better than or equal to in all the three cases.

In Table 3, it can be seen that QASMO is strictly better than SMO over eight problems
(nos. 4, 11, 15, 22, and 25-28) according to criterion 2. Both the algorithms perform identi-
cally on problem 19. There are three problems (nos. 3, 5, and 24) where QASMO performs
better than SMO. In problem no. 12, SMO performs strictly better than QASMO, and in
problem no. 14, SMO performs better than QASMO.

In Tables 1 and 3, it can be concluded that in five problems where both the algorithms
fail to solve the problem (0 number of successful runs) in all 100 independent runs, the
average error value obtained by QASMO is better than the average error value obtained by
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TABLE 7. Number of successful runs out of 100 independent runs and aver-
age number of function evaluations for successful runs for SMO and QASMO
(nonscalable problems).

Number of successful runs  Average number of function

(out of 100 runs) evaluations for successful runs

Problem number SMO QASMO SMO QASMO
31 100 100 3738 3492
32 98 49 430,014 4,374,449
33 0 0 ~ ~

34 100 100 3585 3200
35 100 100 256,584 55,756
36 100 100 3304 3050
37 100 96 131,394 180,988
38 100 100 26,119 542,972
39 100 100 2009 1936
40 100 100 3071 2913
41 0 0 ~ ~

42 100 96 24,508 317,022
43 0 0 ~ ~

44 100 99 13,458 29,208
45 0 0 ~ ~

46 100 100 10,737 8753

Better entries are shown in bold.

TABLE 8. t-test results for problems having identical number of successful
runs for SMO and QASMO (nonscalable problems).

Problem number Sign Problem number Sign
31 + 38 —
34 + 39 =
35 + 40 +
36 + 46 +

SMO except problem no. 17. Also, it can be seen for problem no. 19 that global optima is
obtained by both the algorithms as error value is 0.

Performance index graphs for scalable problems of 30 dimensions have been provided
in Figures 10-12. In case (i), the average number of function evaluations for successful
runs and the average of error values of 100 runs have been given equal weights. PIs of both
algorithms have been displayed in Figure 10. In Figure 10, it can be observed that the value
of PI of QASMO is more than that of SMO over the entire range of weight (0< w < 1). So,
in this case, QASMO is a clear winner.

In case (ii), the number of successful runs and the average of error values have equal
weights, and the PI graph is given in Figure 11. From the graph, it can be observed that
when the weight is less than 0.56 (approx.), QASMO is better than SMO, and when weight
is greater than 0.56, SMO outperforms QASMO. The reason for such behavior is that as we
go on increasing the weight given to average number of function evaluations for successful
runs, the value of PI of QASMO has less value than that of SMO because as we have
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TABLE 9. Best, average, and worst of error values obtained in 100 independent runs (nonscalable
problems).

Best Average Worst

Problem number SMO QASMO SMO QASMO SMO QASMO

31 8.53E-08 1.86E-08 4.82E-06 4.38E-06 9.99E-06 9.91E-06
32 6.79E-08 2.40E-07 1.11E-05 1.39E-04 2.87E-04 2.87E-04
33 1.21E-07 1.04E-08 4.87E-06 4.17E-06 9.48E-06 9.92E-06
34 1.74E-07 3.97E-08 4.35E-06 4.61E-06 9.98E-06 9.86E-06
35 1.22E-06 8.66E-07 7.24E-06 6.92E-06 1.00E-05 9.96E-06
36 9.26E-08 1.46E-07 4.37E-06 3.97E-06 9.75E-06 9.91E-06
37 241E-06 1.21E-06 7.95E-06 4.41E-05 9.99E-06 9.16E-04
38 1.42E-06 4.66E-07 6.25E-06 6.24E-06 9.91E-06 9.95E-06
39 3.75E-06 3.75E-06 4.99E-06 4.83E-06 9.96E-06 9.94E-06
40 1.88E-08 3.74E-09 4.26E-06 3.32E-06 9.94E-06 9.89E-06
41 3.75E-04 3.75E-04 3.88E-04 5.65E-02 1.28E-03 1.52E-01
42 1.01E-06 1.55E-06 S.77E-06 2.02E-01 9.88E-06 5.05E+00
43 5.96E-05 5.96E-05 5.96E-05 1.05E-01 5.96E-05 5.27E4-00
44 1.74E-08 4.54E-08 4.48E-06 5.36E-02 9.92E-06 5.36E+00
45 4.82E-01 4.82E-01 4.82E-01 4.82E-01 4.82E-01 4.82E-01
46 5.60E-08 2.20E-07 3.65E-06 4.75E-06 9.70E-06 9.57E-06

Better entries are shown in bold.
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FIGURE 10. Performance index when k; = w and k» = k3 = I_Tw (scalable — 30 dimensions).

mentioned previously that although QASMO has more number of successful runs in some
cases, but it comes at the cost of more number of function evaluations.

In case (iii), equal weights have been assigned to number of successful runs and aver-
age number of function evaluations for successful runs, and the PI graph is displayed in
Figure 12. It is clear from the graph that QASMO outperforms SMO in this case.

Also, convergence of the algorithms for some selected problems have been shown in
Figures 19 and 20.

Numerical results of scalable problems for 50 dimensions has been discussed in the
succeeding discussions.
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FIGURE 11. Performance index when k» = w and k1 = k3 = I*Tw (scalable — 30 dimensions).
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FIGURE 12. Performance index when k3 = w and k; = kp = I_Tw (scalable — 30 dimensions).

Table 4 contains information about the number of successful runs and the average num-
ber of function evaluations of successful runs. From this table, it can be seen that SMO has
100 successful runs in 21 problems, whereas QASMO has 100 successful runs in 23 prob-
lems. In problem nos. 6, 10, and 21, QASMO performs strictly better than SMO according
to criterion 1. While, in problem no. 4, SMO performs strictly better than QASMO. Out of
20 problems, where both the algorithms have 100 successful runs, QASMO performs better
than SMO over 15 problems according to criterion 1. ¢-test results in Table 5 depict that there
is a significant difference in the average number of function evaluations in 16 problems out
of 20 problems.

Table 6 provides the best, average, and worst of the error values obtained in 100 runs.
There are seven problems (nos. 4, 7, 9, 11, 20, 22, and 24) where QASMO performs strictly
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FIGURE 14. Performance index when k, = w and k1 = k3 = (I_Tw) (scalable — 50 dimensions).

better then SMO according to criterion 2. In problem nos. 6, 12, and 14, QASMO performs
better than SMO.

Both the algorithms have the same performance on problem no. 19. PI graphs have been
provided in Figures 13—15.

Performance index graph for case (i) has been given in Figure 13, for case (ii), in
Figure 14, and for case (iii), in Figure 15. In all the cases, the performance of QASMO is
better than SMO.

Also, convergence graph of two problems have been given in Figures 21 and 22.

Hence, from the previous discussion and PI graphs, it can be concluded that QASMO
outperforms SMO in most of the scalable benchmark problems considered in the benchmark
set using both types of analysis.

Result discussion for nonscalable problems has been given in Tables 7-9.
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FIGURE 16. Performance index when k1 = w and kp = k3 = “_Tw) (nonscalable).

In Table 7, it can be seen that the number of successful runs of SMO is either identical
or better than QASMO. SMO has 100 successful runs on 11 problems, and QASMO has
100 successful runs in eight problems. In four problems (nos. 32, 37, 42, and 44), SMO is
strictly better than QASMO. Both the algorithms failed to solve problem nos. 33, 41, 43,
and 45 in all the runs. QASMO performs better than SMO over seven problems according
to criterion 1.

Table 8 contains #-test results of the average number of function evaluations. It can be
seen from the table that out of 8 problems, where both the algorithms have identical number
of successful runs, QASMO performs significantly better than SMO over six problems.

Best, average, and worst of the error values obtained by both algorithms have been listed
in Table 9. For best values, QASMO is better than SMO over seven problems, both algo-
rithms have the same best error values in four problems, and SMO is better than QASMO
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FIGURE 18. Performance index when k3 = w and k1 = ko = @ (nonscalable).

over five problems. For average values, QASMO is better than SMO over 7 problems, same
error values for 1 problem and SMO is better than QASMO over 8 problems. For worst val-
ues, QASMO outperforms SMO over six problems, and SMO outperforms QASMO over
eight problems. Both the algorithms have the same worst error values in two problems. In
problem nos. 31, 35, and 40, QASMO performs strictly better than SMO. ¢-test results have
been provided in Table 8.

In Tables 7 and 9, it can be concluded that out of four problems (nos. 33, 41, 43, and
45), where both SMO and QASMO has 0 successful runs, the average error value obtained
by SMO is better than that obtained by QASMO in two problems (nos. 41 and 43). No clear
conclusion can be drawn about the performance of two algorithms on nonscalable problems
considered in the benchmark set. In some cases, SMO is performing better, while in other,
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QASMO is better. PI graphs have been provided in Figures 16—18. In all three cases, the
performance of SMO is better than QASMO.

From the earlier discussion on the results of both scalable and nonscalable problems, it
can be concluded that although QASMO is showing good performance on scalable problems
(listed in benchmark set) in terms of reliability, efficiency, and accuracy as compared with
SMO, its performance is reasonable on nonscalable problems.

6. APPLICATION

Determination of molecular confirmation is one of the most challenging problems of
computational chemistry, which can be modeled as a global optimization problem. A molec-
ular conformation problem deals with finding the global minimum of a suitable potential
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energy function, which depends on relative positions of atoms. Minimization of this energy
provides maximum stability for atomic clusters (Doye 1996). This energy is the sum of sev-
eral factors including energy caused by the interaction of two nonbonding atoms. Van der
Waals interaction is a contributing factor in the energy of interaction between two nonbond-
ing atoms. Van der Waals interaction is characterized by the LJ potential function. The main
obstacles in solving LJ problem is the nonlinearity and nonconvexity of the objective func-
tion and exponentially increasing number of local minima with increase in the number of
dimensions. Despite these difficulties, solution of this problem is very important to facil-
itate drug design, synthesis, and utilization of pharmaceutical products. Thus, in the past
few years, this problem has attracted several researchers from the field of global optimiza-
tion to apply their algorithms to solve this problem. In Wille and Vennik (1985), it has been
shown that complexity of determining global minimum energy of the LJ cluster makes this
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TABLE 10. Dimension and search space for different number of atoms.

Number of atoms Dimension Search space
3 9 [-0.52, 0.45]°
4 12 [—0.52, 0.62]"?
5 15 [—0.75, 0.75]"
6 18 [—0.75, 0.75]'8
7 21 [—0.96, 0.87]%!
8 24 [—0.9, 1.022]*
9 27 [—2, 217

10 30 [—2, 2]

TABLE 11. Number of successful runs and average number of function evaluations of
successful runs for SMO and QASMO (Lennard—Jones problem).

Number of successful runs Average number of function

(out of 100 runs) evaluations for successful runs
Number of atoms SMO QASMO SMO QASMO
3 100 100 31,486 22,154
4 98 100 164,639 36,624
5 18 100 287,115 50,135
6 100 100 144,074 57,802
7 97 100 355,033 62,017
8 94 100 314,529 140,117
9 58 929 717,820 1,030,777
10 80 100 612,590 852,578

Better entries are shown in bold.

TABLE 12. t-test results for problems having identical number of successful
runs for SMO and QASMO (Lennard—Jones problem).

Number of atoms Sign Number of atoms Sign

3 + 6 +

problem fall in the category of NP-hard problems. This observation has been proved as a
motivation for applying metaheuristics to this problem because of their success in solving
NP-hard problems in the past few decades. In Deep et al. (2011), LJ problem is solved by
applying different variants of real-coded genetic algorithms. In Deep and Madhuri (2011),
an attempt has been made to solve LJ problem using a variant of PSO named as globally
adaptive inertia weight PSO. In this article, LJ problem is solved using SMO and QASMO.
Parameter setting is the same as observed for benchmark problems. Search space for the
different clusters has been taken from Deep and Madhuri (2011).
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TABLE 13. Best, average, and worst of error values obtained in 100 independent runs (Lennard-Jones
problem).

Best Average Worst

Number of atoms SMO QISMO SMO QISMO SMO QISMO

1.56E-07 6.01E-07 5.93E-06 6.22E-06 9.92E-06 9.98E-06
3.07E-06  2.33E-06 9.85E-06 7.57E-06 1.61E-04 1.00E-05
4.87E-06 1.96E-06 6.34E-03 8.02E-06 1.43E-01 9.98E-06
7.02E-08 S5.03E-08 5.12E-06 6.50E-06 9.91E-06 1.00E-05
2.79E-07  2.04E-07 9.52E-06 6.49E-06 2.39E-04 1.00E-05
5.35E-08 1.40E-07 1.34E-02 5.03E-06 9.59E-01 9.96E-06
2.26E-07 7.75E-09 1.86E-01 9.24E-03 2.93E+00 9.24E-01
0 9.62E-08 1.60E-07 1.24E-01 4.86E-06 4.11E4+00 9.98E-06

Better entries are shown in bold.

— O 00 N L AW

6.1. LJ problem

A system containing more than one atom, whose Van der Waals interaction can be
described by LJ potential is called an LJ cluster. LJ problem deals with finding the relative
position of atoms in a cluster in the three-dimensional Euclidean space in such a way that
potential energy is minimum.

Given a cluster of n atoms, LJ problem can be defined mathematically as

n—1 n 1 2
V= 2 2 (@ - r—s)

ij

where r;; is the Euclidean distance between two distinct atoms i and j. Each atom is char-
acterized by a three-dimensional vector say (a, b, and c). Thus, dimension of each solution
of LJ problem will be 3n, where n is the number of atoms in the cluster. Here, target is to
minimize V. The potential repels two atoms when they come too close to each other, and
this behavior requires a special treatment in molecular dynamics simulation.

In this article, microclusters of atoms from three to ten has been considered for experi-
ment. Parameter setting and comparison criterion are the same as described for benchmark
problems. Search space for different number of atoms have been provided in Table 10, and
the numerical and statistical results are provided in Tables 11-13

In Table 11, it can be seen that QASMO has more or equal number of successful runs
in comparison with SMO in all the cases. QASMO has 100 successful runs in all the cases
except for nine atoms cluster, where the number of successful runs is 99. Out of the eight
cases, QASMO performs strictly better than SMO in six cases (for 4, 5, 7-9, and 10 atoms)
according to criterion 1. Also, in the case of three and six atoms, where both the algorithms
have 100 successful runs, QASMO performs better than SMO.

Table 12 provides t-test results for 3 and 6 number of atoms (where both the algo-
rithms have identical number of successful runs), and it shows that the number of function
evaluations of QASMO is significantly less than SMO.

Table 13 provides the best, average, and worst of error values obtained by both the
algorithms in 100 independent runs. For best error values, QASMO performs better than
SMO in five cases (for 4-7 and 9 atoms). For average error values, QASMO outperforms
SMO in six cases (for 4, 5, 7-9, and 10 atoms), and for worst error values, QASMO beats
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SMO in six cases (for 4, 7-9, and 10 atoms). There are four cases (for 4, 5, 7, and 9 atoms)
where QASMO performs strictly better than SMO according to criterion 2.

Therefore, the aforementioned discussion of results validates the applicability of the
proposed algorithm in solving real-life problem. Results indicate that QASMO is efficient
in solving a highly computationally complex problem like LJ potential for microclusters
(from three to ten atoms) at less computational cost.

7. CONCLUSION AND FUTURE SCOPE

In this article, a modified version of SMO is proposed. Local search ability of SMO is
improved by incorporating QA operator in it, which is definitely helpful for SMO to explore
the surrounding regions of the current global and local leaders. To check the robustness
of the proposed algorithm, its performance has been tested over a benchmark set of 46
problems including both scalable and nonscalable problems. Although results are showing
improvement in terms of function evaluations success and quality of the solution attained
on scalable problems, it is performing moderately on nonscalable problems. In addition to
benchmark problems, LJ potential problem for three to ten atoms cluster is solved using
QASMO, and results are compared with SMO. Results are better for QASMO for solving
LJ problem. In the future, efforts will be made to further improve the performance of the
proposed algorithm. Also, LJ problem for large number of atoms will be solved using the
improved versions of SMO. We would like to add here that the proposed work is still in its
preliminary stage, and several improvements can be performed in the future.
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APPENDIX

TABLE Al. Scalable problems.

Test problems

Objective function

Search range

Optimal value

Sphere function

De Jong’s F4
Griewank
Rosenbrock

Rastrigin

Ackley

Alpine
Michalewicz
Cosine mixture
Exponential
Zakharov

Cigar
Brown3

Schewel prob 3
Salomon problem

Axis parallel hyperellipsoid
Pathological

Sum of different powers

Step function
Quartic function

Inverted cosine wave function

Neumaier3 problem

Rotated hyper ellipsoid function

Levi Montalvo 1

Levi Montalvo 2

Ellipsoidal

Shifted Parabola CEC 2005

Shifted Schwefel CEC 2005

Shifted Greiwank CEC 2005

Shifted Ackley CEC 2005
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TABLE A2. Nonscalable problems.

Test problems Objective function Search range dimension  Optimal value
— v 2 — Ay 2 _ 2
Goldstein price function fa1(x) = [1 + (x1 +x2 4+ 12 (19— 4x1 + 3x7 — 14x; + 6x1x2 + 3x2)] [—22] 2 3
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4 —
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