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Abstract: The selection of an appropriate strategy for adjusting inertia weight 
w is one of the most effective ways of enhancing the performance of particle 
swarm optimisation (PSO). Recently, a new idea, inspired from social 
behaviour of humans, for adaptation of inertia weight in PSO, has been 
proposed, according to which w adapts itself as the improvement in best fitness 
at each iteration. The same idea has been implemented in two different ways 
giving rise to two inertia weight variants of PSO namely globally adaptive 
inertia weight (GAIW) PSO, and locally adaptive inertia weight (LAIW) PSO. 
In this paper, the performance of these two variants has been compared with 
three other inertia weight variants of PSO employing an extensive test suite of 
15 benchmark global optimisation problems. The experimental results establish 
the supremacy of the proposed variants over the existing ones in terms of 
convergence speed, and computational effort. Also, LAIW PSO comes out to 
be the best performer out of all the algorithms considered in this study. 
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1 Introduction 

Particle swarm optimisation (PSO) is a swarm-based global optimisation technique. It 
was introduced by Kennedy and Eberhart (1995) and developed by Kennedy et al. 
(2001). The fundamental idea behind PSO is the mechanism by which the birds in a flock 
and the fishes in a school cooperate while searching for food. Only within a few years of 
its introduction, PSO has gained wide popularity due to its simple mathematical 
operations, only a few parameters to adjust, ease of implementation and quick 
convergence. 

In PSO terminology, population is called swarm and the individual solutions are 
referred to as particles. Each particle in the swarm relies on its own experience as well as 
on the experience of its best neighbour. Each particle has an associated fitness value. 
These particles move through search space with a specified velocity in search of optimal 
solution. Each particle maintains a memory which helps it in keeping the track of the best 
position it has achieved so far. This is called the particle’s personal best position (pbest) 
and the best position the swarm has achieved so far is called global best position (gbest) 
of the swarm. PSO has two primary operators: Velocity update and Position update. 
During each generation, each particle is accelerated towards the gbest and its own pbest. 
At each iteration, a new velocity and position for each particle is calculated according to 
the following velocity and position update equations: 

( ) ( )1 1 2 2id id id id gd idv v c r p x c r p x= + − + −  (1) 

In order to keep the particles within the search space the velocity in dth dimension is 
restricted in the range [–Vdmax, Vdmax] using the following relations (Eberhart et al., 1996): 

max max

max max

if
  if   

id d id d

id d id d

v V v V
v V v V

= − < − ⎫
⎬= > ⎭

 (2) 
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The new position of the particle is then calculated, according to the following position 
update equation: 

id id idx x v= +  (3) 

This process is then iterated until a predefined stopping criterion is satisfied. Here,  
Xi = (xi1, xi2, …, xid) represents the position of the ith particle in a d-dimensional search 
space, Pbesti = (pi1, pi2, …, pid) is ith particle’s pbest position, Pgbest = (pg1, pg2, …, pgd) is 
the gbest position and Vi = (vi1, vi2, …, vid) is the velocity of ith particle. The acceleration 
coefficients c1 and c2 control how far a particle can move in a single iteration, by 
weighing the personal experience of a particle and the social information respectively. 
Low values allow particles to roam far from target regions before being tugged back, 
while high values result in abrupt movement towards, or past, target regions. Typically, 
these are both set equal to a value of 2.0. The coefficients r1 and r2 are the uniformly 
generated random numbers in the range [0, 1] to provide stochastic nature to the 
algorithm. 

This model of PSO usually shows fast convergence rate during the earlier iterations 
and quickly approaches the solution region, but in the later iterations convergence rate 
decreases and it finds difficulty in refining the solution to a satisfactory level. The cause 
for this problem is hidden in the search process of PSO. 

Actually, the search for global optimal solution in PSO is accomplished by 
maintaining a dynamic balance between exploration and exploitation. Exploration is the 
ability of an algorithm to explore different regions of the search space in order to locate a 
good optimum. Exploitation, on the other hand, is the ability to concentrate the search 
around a promising area in order to refine a candidate solution (Engelbercht, 2005). So an 
optimal balance between exploration and exploitation is the key to the performance 
control of PSO. To control this balance and the convergence behaviour of swarm the 
concept of inertia weight in PSO was introduced by Shi and Eberhart (1998a) as shown in 
the following equation: 

( ) ( )1 1 2 2id id id id gd id
Inertia Cognitive Socialcomponent component component

v wv c r p x c r p x= + − + −  (4) 

where w is the inertia weight. Clearly, if c1 and c2 are kept fixed, bigger values of inertia 
weight will give large incremental changes in velocity per iteration which means more 
exploration. However, smaller inertia weight means less variation in velocity to provide 
slower update for fine tuning a solution, i.e., local search. It has been inferred that the 
system should start with a high inertia weight for more global exploration and then it 
should be decreased successively to facilitate finer local explorations. The value of inertia 
weight is generally taken between 0 and 1. 

Since the introduction of inertia weight in PSO, a lot of research has been devoted to 
find its optimal or the standard value. But results show that its value is problem 
dependent and no standard value has yet been found. Initial implementations of the 
inertia weight used a static value for the entire process of evolution, for all particles and 
for each dimension. The problem with static inertia weight is that it is not capable of 
achieving optimal balance between local and global search. So a reasonable choice would 
be to vary the inertia weight over iterations instead of using a fixed value of it during the 
course of a run. Therefore, it is particularly important to research dynamic inertia weight. 
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Many researchers have proposed a lot of strategies for dynamically adjusting inertia 
weight. 

Shi and Eberhart (1998b) suggested the use of a linearly decreasing inertia weight 
starting from a large value (0.9) to a small value (0.4). They also proposed the use of 
random inertia weight in Shi and Eberhart (2001) and fuzzy-based adaptive inertia weight 
in Eberhart and Shi (2001). Zhan et al. (2009) also investigated decreasing inertia weight 
and found that the adaptive control of the inertia weight makes the algorithm extremely 
efficient, offering a substantially improved convergence speed in terms of both number of 
functional evaluations and CPU time needed to reach acceptable solutions. In contrast, 
Zheng et al. (2003a, 2003b) investigated increasing inertia weight. According to them, a 
PSO with increasing inertia weight outperforms the one with decreasing inertia weight 
both in convergence speed and solution precision, with no additional computing load. 
Analysing the advantages and disadvantages of above mentioned adaptive inertia weight 
strategies, Cui and Zhu (2007) found that with decreasing inertia weight, algorithm had 
good global search ability initially and had a better convergence later but with a slow rate 
while with increasing inertia weight, swarm converges faster initially but the local search 
ability was poor later. So they proposed a new method that was first linearly increasing 
inertia weight and then linearly decreasing it. A number of other ways for non-linear 
adaptation of inertia weight have been proposed in Chatterjee and Siarry (2006), Malik  
et al. (2007), Jiao et al. (2008), Dong et al. (2008), Li et al. (2009), Cheng and Wang 
(2011), and Sun et al. (2011). Liu et al. (2010) proposed a fuzzy weight strategy for PSO 
where the inertia weight reserves its decreasing property after fuzzy treatment, and the 
position is controlled by fuzzy parameter. Ahmad (2011) proposed an adaptive inertia 
weight approach which uses the success rate (SR) of the swarm as its feedback parameter 
to ascertain the particles’ situation in the search space. 

Almost all the methods (except a few) that have been proposed till date, for the 
dynamic adjustment of inertia weight, have used some deterministic approach. This paper 
investigates a non-deterministic way of dynamically adjusting the inertia weight proposed 
by Deep et al. (2011). This method is based on the improvement in the best fitness of the 
particles as the search process progresses. The performance of the PSO variants arising 
from it is compared with some other available PSO variants reported in the literature. 

The remainder of this paper is organised as follows: Section 2 describes the 
investigated strategy for dynamic adjustment of inertia weight. Computational results 
obtained for the test functions are presented in Section 3 and concluded in Section 4. 
Finally, some limitations of the method with a direction for future work are given in 
Section 5. 

2 Nature inspired adaptive inertia weight 

This paper investigates a greedy approach for inertia weight in PSO that adapts itself at 
each iteration according to the improvement in the best fitness. This approach is inspired 
from human behaviour that “a success of one’s act increases one’s self-confidence, while 
a failure decreases it”. Since the inertia weight in PSO is a measure of the particle’s 
confidence in its present velocity. So the adaptation strategy is that the inertia weight 
should be increased when a better fit position is encountered and it should be decreased 
when a not so fit position is encountered. This modification, however, does not prevent 
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hill climbing capabilities of PSO, it merely increases the influence of potentially fruitful 
inertial directions while decreasing the influence of potentially unfavourable inertial 
directions. In this algorithm, the inertia weight has been taken as a function of iteration 
number and is updated according to the following equation: 

( 1) 0.9,                if 0
( 1) ( 1) ( ) if 0

w t t
w t f t f t t

+ = = ⎫
⎬+ = − − > ⎭

 (5) 

where w(t + 1) is the inertia weight at (t + 1)th iteration and f(t) is the objective function 
value at tth iteration. Clearly, this way of adapting the inertia weight may sometimes lead 
to very large values of w resulting in the explosion of particle’s velocities, therefore the 
velocities are clamped in the range [–Vdmax, Vdmax] to keep the particles within the 
boundaries of the search space. 

When the algorithm starts, employing larger inertia weight values, may lead to a 
strong exploration behaviour among swarms. On the other hand, decreasing inertia 
weight at the algorithm’s final steps may direct the swarms to converge faster to global 
optimum which the algorithm has found yet. Hence, it could search for the better solution 
in the smaller region. When using this greedy approach, the variations of inertia weight as 
obtained by our experiments are shown (for three functions) in the Figure 1. Here, the 
value of inertia weight was updated using equation (5) according to the improvement in 
global best fitness. For all the functions used in this study, it was observed that there were 
large oscillations in the value of inertia weight in the initial iterations, which help the 
swarm in maintaining the diversity, resulting in good exploration. So the particles can fly 
through the total search space quickly. Towards the end, it was observed that the 
oscillations become smaller and smaller which facilitate fine tuning of the final solution. 
Based on this observation, one can expect that this strategy may perform well for 
enhancing the performance of PSO. From Figure 1, another observation is that during the 
search the inertia weight sometimes becomes zero and does not increase for many 
consecutive iterations which means that the best position sometimes stops improving, i.e., 
the swarm sometimes stagnates at a suboptimal solution. The smaller the inertia weight, 
the more do the cognitive and social components control position updates. With zero 
inertia of swarm, stagnation for many consecutive iterations implies that the social and 
cognitive components are not capable of easily escaping the suboptimum. It slows down 
the search process. To overcome this situation it is proposed that if the swarm stagnates 
for M consecutive iterations, it should be provided with some inertia to increase the 
diversity. So the inertia weight equation is modified as follows: 

( )

( 1) 0.9
and for 0 we have if 0                    

( 1) ( 1) ( )               
if 0 for

* / ;
successive iterationsstart start end max

w t
t t

w t f t f t
w M

w w w w t t

+ = ⎫
⎪> = ⎪⎪+ = − − ⎬
⎪= ⎪= − −
⎪⎭

 (6) 

where wstart is the initial value and wend is the final value of the inertia weight, and t is the 
current iteration (generation) of the algorithm while tmax is the maximum number of 
iterations (generations) specified by the user. This strategy may help in decreasing the 
period of entrapment (i.e., the number of iterations for which the swarm stagnates) in 
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suboptimal solutions during the search and hence improves the convergence rate. This 
strategy is used in two ways, namely, globally and locally. 

Figure 1 Variation of inertia weight with iterations for Rosenbrock, Cosine and Ackley functions 
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In the global strategy each particle in the swarm has the same inertia weight that updates 
according to equations (6) using the improvement in global best fitness. It is called 
globally adaptive inertia weight (GAIW). The pseudo code for GAIW PSO is given in 
Algorithm 1. In this case, if the global best fitness improves at any iteration, the particles 
are encouraged to search in their current directions, otherwise inertia is made zero and the 
swarm starts contracting to the current global best position until another particle takes 
over or until the swarm is provided with some inertia from which time it starts globally 
exploring the search space. But, if the global best particle stops moving for a few 
iterations, the whole swarm may stop changing. It may lead to premature convergence. 
Considering this possible disadvantage of the global strategy a local strategy is proposed 
i.e., the inertia weight for each particle at each iteration is updated individually according 
to equations (6) using the improvement in its own personal best fitness. It is called  
locally adaptive inertia weight (LAIW). The pseudo code for LAIW PSO is given in 
Algorithm 2. 
Algorithm 1 GAIW PSO 

Begin 
Initialize the swarm with random positions of particles. 
Initialize the velocity of each particle to zero. 
Evaluate the fitness of all particles. 
Set current position of each particle as its pbest. 
Set the best position of the swarm as gbest. 
Initialize inertia weight at 0.9 and set iteration=0. 
Do until termination condition is satisfied 
iteration=iteration+1 
For i=1 to swarm size 
 For j=1 to dimension 
  update velocity using equations (4) and (2) 
  update position using equation (3) 
 End For j 
End For i 
Evaluate fitness of all particles 
update pbest and gbest 
update inertia weight using equation (6) 
End Do 
End. 

At any iteration if a particle’s personal best fitness improves, the particle is encouraged to 
search in its current direction, otherwise its inertia is made zero and the particle starts 
searching locally until its personal best improves or until it is provided with some inertia 
from which time it starts exploring globally. Also, since the inertia weight of each 
particle is updated individually, all the particles in the swarm possibly have different 
inertia weight. Therefore, some particles may search globally while the others are 
searching locally. This leads to automatic balancing of local and global search. This 
strategy strongly avoids entrapment in suboptimal solutions and due to increased 
diversity it is highly explorative. 
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Algorithm 2 LAIW PSO 

Begin 
Initialize the swarm with random positions of particles. 
Initialize the velocity of each particle to zero. 
Evaluate the fitness of all particles. 
Set current position of each particle as its pbest. 
Set the best position of the swarm as gbest. 
Initialize inertia weight at 0.9 and set iteration=0. 
Do until termination condition is satisfied 
iteration=iteration+1 
For i=1 to swarm size 
 For j=1 to dimension 
  update velocity using equations (4) and (2) 
  update position using equation (3) 
 End For j 
Evaluate fitness of ith particle 
update inertia weight using equation (6) 
End For i 
update pbest and gbest 
End Do 
End. 

The investigated inertia weight variants of PSO, i.e., GAIW and LAIW are compared 
with three existing inertia weight variants namely fixed inertia weight (FIW), linearly 
decreasing inertia weight (LDIW) and non-linearly decreasing inertia weight (NDIW). 
The equations (7) and (8) are used to determine LDIW (Shi and Eberhart 1998b) and 
NDIW (Li et al., 2009), respectively. 

( )–  – * /  start start end maxw w w w t t=  (7) 

( )
max

7– * tan * 1
8

k

start end end
tw w w w

t

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟= − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
 (8) 

where wstart, wend, tmax and t have the same meanings as in equations (6), tan() is the 
trigonometric tangent function, and k is the control variable which can control the 
smoothness of the curve that reflects the relationship between w and t. 

3 Computational experiments 

This section focuses on comparing the effectiveness and performance of the investigated 
inertia versions GAIW and LAIW against FIW, LDIW and NDIW PSO as tested on  
15 benchmark problems. All the PSOs are implemented in C and experiments are carried 
out on a Xeon, 3.4 GHz machine under LINUX operating system. 
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Table 1 Description of test function 
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3.1 Test problems 

In this paper, a test bed of 15 benchmark problems with varying difficulty levels, is 
considered for evaluation and comparison of performance of the algorithm. These 
problems are scalable, i.e., the dimension of the problems can be increased/decreased as 
desired. In general, the complexity of the problem increases as the problem size is 
increased. The problem set is listed in Table 1. These problems are of continuous 
variables and have different degree of multimodality. All these problems are of 
minimisation type and the problem size (n) for all problems is kept fixed at 30. 

3.2 Parameter selection 

Here, we use c1 = c2 = 2, which has generally been used in literature. The swarm size has 
been set as 60. The maximum allowable velocity in each dimension has been taken to be 
Vdmax = (xdmax – xdmin) *0.25, i.e., under the assumption that any particle at any iteration 
can have a sufficient excursion without escaping the optimum in a given direction, where 
xdmax and xdmin are the upper and lower bounds for particles’ positions in dth dimension of 
the search space. In order to make fair comparisons, all these settings have been kept 
same for the compared algorithms for a given problem. The maximum number of 
iterations tmax is fixed as 5,000 for all algorithms and for all problems. The termination 
criterion for all algorithms is a combination of the following two conditions: 

1 reaching the maximum number of iterations 

2 getting the minimum error ε (i.e., getting a solution within the tolerance limit ε), 
which means that simulation of an algorithm is stopped as soon as either of these 
conditions is satisfied. 

For FIW PSO, w = 0.68 is set. For all other algorithms wstart = 0.9 and wend = 0.4 (Shi and 
Eberhart, 1998b) are set. Also for NDIW PSO k = 0.6 [as recommended in Li et al. 
(2009)] is taken. For GAIW and LAIW, M = 25 is taken for all scalable problems. 

3.3 Performance evaluation criteria 

In order to avoid attributing the results to the choice of a particular initial population, 
each test is performed 100 times, starting from various randomly selected points in the 
search space, i.e., for each of the 100 runs a different seed is used for starting the random 
number generator. All the results that are recorded and presented here have been 
averaged over the successful runs out of 100. A run is considered a success if the 
algorithm finds a solution satisfying |fopt – fmin| < ε, where fmin is the best solution found 
when an algorithm terminates and fopt is the known global optimum of the problem. For 
each algorithm and for each problem the following are recorded: 

1 Average number of function evaluations (AFE) of successful runs. 

2 number of successful runsSR 100
total number of runs

= ×  
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3 AFESuccess performance (SP) total number of runs
number of successful runs

= ×  

(Liang et al., 2006) 

4 Average execution time (AET) of successful runs. 

5 Average error (AE) = Average of |fmin – fopt| over successful runs. 

6 Standard deviation (SD) = SD of the error |fmin – fopt|. 

These performance metrics are calculated for each problem-algorithm pair and are shown 
in tabular as well as graphical form. 

3.4 Results and discussions 

From the recorded simulated results, statistical analyses are carried out and presented in 
Tables 2 to 7 and Figures 2 to 8. In Figures 2 to 7, the best performing PSO is marked 
with star. For analysis box-plots have been used. These have been drawn for all the 
functions of the problem set, taking one problem set at a time. For drawing box-plots, the 
problems with no success are assigned maximum number of function evaluations and the 
maximum SP. 
Table 2 Average number of functional evaluations 

Average number of functional evaluations Problem 
number FIW LDIW NDIW GAIW LAIW 
1 70,921 161,621 99,573 15,080 1,560 
2 72,207 159,547 97,753 21,789 1,645 
3 157,472 187,242 124,739 36,272 1,867 
4 121,825 186,560 120,594 140,243 1,480 
5 64,856 180,404 96,820 45,017 651 
6 177,488 194,984 131,728 72,143 119,713 
7 38,878 142,139 81,024 9,536 31,769 
8 60,750 156,436 93,478 19,351 192 
9 23,821 - 51,660 14,590 - 
10 69,359 157,254 96,107 22,424 7,463 
11 33,976 139,144 79,050 8,045 10,393 
12 26,763 126,875 61,943 23,941 480 
13 86,864 167,530 105,958 195,658 1,560 
14 421 543 1,250 1,242 45,937 
15 177,488 180,559 119,416 42,372 1,980 

The goal of the analysis is to observe if the proposed strategy shows an improvement 
over the existing ones or not. Table 2 shows the AFE of successful runs. Corresponding 
box-plots are given in Figure 2 to observe the performances of PSOs at a glance. AFE is 
proportional to the computational cost of the method. It is clear that LAIW performs the 
best and GAIW stands second from AFE point of view. The order of PSOs based on the 
computational cost is given below: 
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LAIW GAIW FIW NDIW LDIW.> > > > 1 

It can be clearly seen that the proposed PSOs significantly reduce the AFE and hence the 
computational effort. 

Table 3 Success rate 

Success rate Problem 
number FIW LDIW NDIW GAIW LAIW 

1 100 100 100 100 100 
2 98 90 100 100 100 
3 21 31 39 17 100 
4 74 53 75 94 100 
5 81 68 94 98 100 
6 97 97 100 99 64 
7 71 53 96 83 100 
8 96 99 96 95 100 
9 4 0 1 97 0 
10 97 98 100 97 100 
11 100 99 100 99 99 
12 100 95 99 100 100 
13 39 20 37 92 100 
14 100 100 99 100 51 
15 81 55 91 15 100 

Table 4 Success performance 

Success performance Problem 
number FIW LDIW NDIW GAIW LAIW 
1 70,921 161,621 99,573 15,080 1,560 
2 73,680.6 177,274.4 97,753 21,789 1,645 
3 749,866.7 604,006.5 319,843.6 213,364.7 1,867 
4 164,628.4 352,000 160,792 149,194.7 1,480 
5 80,069.1 265,300 103,000 45,935.71 651 
6 182,977.3 201,014.4 131,728 72,871.72 187,051.6 
7 54,757.8 268,186.8 84,400 11,489.16 31,769 
8 63,281.3 158,016.2 97,372.92 20,369.47 192 
9 595,525 - 5,166,000 15,041.24 - 
10 71,504.1 160,463.3 96,107 23,117.53 7,463 
11 33,976 140,549.5 79,050 8,126.263 10,497.98 
12 26,763 133,552.6 62,568.69 23,941 480 
13 222,728.2 837,650 286,373 212,671.7 1,560 
14 421 543 1,262.626 1,242 90,072.55 
15 219,121 328,289.1 131,226.4 282,480 1,980 
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Table 5 Average execution time 

Average execution time Problem 
number FIW LDIW NDIW GAIW LAIW 

1 0.303199 0.668365 0.502401 0.077768 0.008834 

2 0.308057 0.667041 0.497823 0.112661 0.009385 

3 1.096168 1.302863 0.982663 0.290529 0.015888 

4 0.617346 0.956865 0.728171 0.848851 0.009879 

5 0.598862 1.091694 0.672774 0.314717 0.00475 

6 1.156096 1.24611 0.962913 0.536842 0.941187 

7 0.364262 1.149043 0.730205 0.088965 0.304798 

8 0.536564 1.209795 0.808961 0.173119 0.001594 

9 0.151256 - 0.38075 0.108605 - 

10 0.445497 0.969521 0.680739 0.163085 0.059022 

11 0.160474 0.596439 0.410468 0.042905 0.05556 

12 0.208266 0.589197 0.345083 0.133899 0.002781 

13 0.384197 0.688723 0.531786 0.982588 0.008784 

14 0.006215 0.007833 0.020361 0.020535 0.671959 

15 0.678231 0.960435 0.743937 0.270227 0.013654 

Table 6 Average error 

Average error Problem 
number FIW LDIW NDIW GAIW LAIW 

1 0.000953 0.000945 0.000942 0.000934 0.000114 

2 0.000935 0.000895 0.000919 0.000945 0 

3 0.000954 0.000924 0.000925 0.000885 0.000007 

4 98.34058 97.89938 98.88599 94.54052 32.66543 

5 49.21176 49.39174 49.19422 49.4536 4.322524 

6 0.000971 0.000966 0.000965 0.000928 0 

7 0.000947 0.000954 0.000935 0.000912 0.93914 

8 0.000936 0.000938 0.00093 0.000881 7.658117 

9 48.0878 - 49.38712 47.7859 - 

10 0.000938 0.000947 0.000935 0.000875 0.00024 

11 0.000942 0.00094 0.000948 0.000921 0.000937 

12 9.348343 9.480324 9.200464 9.336067 0 

13 46.79 47.62784 47.17672 44.49966 6.322957 

14 32.82387 45.37833 42.70737 44.3987 44.94361 

15 0.000948 0.000954 0.000964 0.000799 0 
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Table 7 Standard deviation 

Standard deviation Problem 
number FIW LDIW NDIW GAIW LAIW 

1 0.000034 0.000057 0.000068 0.000065 0.000126 

2 0.00016 0.000316 0.000079 0.00006 0 

3 0.001852 0.001381 0.001158 0.00196 0.000067 

4 58.35779 92.35525 57.10645 28.01283 11.49765 

5 23.86082 33.89431 12.4941 7.110318 7.890891 

6 0.000173 0.000173 0.000029 0.00015 0 

7 0.000607 0.000899 0.000199 0.000438 0.053908 

8 0.00021 0.000116 0.000204 0.00024 1.539504 

9 235.5884 - 491.3956 8.68543 - 

10 0.000179 0.000145 0.00006 0.000208 0.000406 

11 0.000056 0.000112 0.000053 0.000102 0.000113 

12 0.669744 2.24042 1.179013 0.56194 0 

13 58.60587 95.27074 61.61783 17.83137 3.943056 

14 0 0.705244 6.800679 5.472719 44.26714 

15 0.000462 0.000863 0.000305 0.001913 0 

Figure 2 Average number of functional evaluations (see online version for colours) 

FIW LDIW NDIW GAIW LAIW

0

2

4

6

8

10

12

14

16

18

20
x 10

4

A
ve

ra
ge

 F
un

ct
io

n 
E

va
lu

at
io

ns

Algorithm  

Table 3 compares SR of all five versions of the PSO considered in this paper. SR is 
directly proportional to the reliability of the method. The corresponding boxplot is shown 
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in Figure 3. It is clear that performance of LAIW is again the best among all PSOs 
considered. i.e., proposed local strategy shows an improvement over global one and other 
PSOs. Further, the order of PSOs based on the SR is as follows: 

LAIW GAIW NDIW FIW LDIW.> > > >  

Though the SR of LAIW for the problem number 9 is zero, GAIW showed a very good 
SR for this problem while that for others is very small. It may be seen as an exceptional 
case for LAIW. 

Figure 3 Success rate (see online version for colours) 
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Figure 4 Success performance (see online version for colours) 
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Figure 5 Average execution time (see online version for colours) 
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Figure 6 Average error (see online version for colours) 
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In order to observe the consolidated effect on SR and AFE on the performance of PSO, a 
comparison among all five versions is made on the basis of SP also. Table 4 and Figure 4 
present this information. From SP point of view following order is seen: 

LAIW GAIW NDIW FIW LDIW.> > > >  

The AET of the successful runs of all considered PSOs is presented in Table 5 and 
corresponding box-plot is shown in Figure 5. Clearly, LAIW is again the best performer. 
The order of PSOs based on the AET is given below: 

LAIW > GAIW > FIW > NDIW > LDIW.  
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Also, it can be seen that by using the proposed strategy the AET decreases significantly, 
i.e., the convergence rate is considerably improved. 

Figure 7 Standard deviation (see online version for colours) 
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Figure 8 Convergence graph for sphere function (see online version for colours) 
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Now the most accurate method is sought. For this, the comparisons based on AE and SD 
of successful runs are carried out. SD gives the information about the consistency of the 
algorithm to reach the optimal solution over the successful runs. Smaller value of SD 
indicates the consistency of the algorithm in finding the optimal solution. Tables 6 and 7 
show AE and SD respectively and corresponding box-plots are given in Figures 6 and 7, 
respectively. Due to the termination condition based on error, there is little difference 
among AE of all five versions of the algorithms and the same is true for SD. From  
Figure 5, it is clear that on the basis of AE, LAIW performs the best. All other versions 
are comparable. From Figure 7, it is observed that on the basis of SD also, LAIW is the 
best performer. Following performance order of the algorithms, for solution accuracy, is 
observed: 

LAIW GAIW FIW NDIW LDIW.> > > >  

On the basis of above analysis, LAIW performs the best among all five versions of PSO. 
Although in an exceptional case when LAIW could not solve the problem number 9, 
GAIW performed the best among all others. So, it may be said that the proposed strategy 
gives significantly better results than the existing ones. 

The convergence graph for sphere function for all the five versions of PSO is shown 
in the Figure 8. It clearly shows that LAIW gives the fastest convergence towards the 
minimum and can find the optimal solution. Thus, from the point of view of convergence 
rate also, proposed strategy performs the best. 

Let us now discuss the possible reasons for the good performance of proposed 
strategy. In standard PSO, each particle moves under the influence of three velocity 
components. When inertia weight is kept fixed or is varied between 0 and 1, each  
of the three velocity components affects, almost equally, the movement of the  
particles during entire search process. But in the proposed strategy when the value of w is 
very large, the particles perform almost individual (i.e., independently of others)  
search controlled mainly by inertia, and when the value of w is very small, the  
search is controlled mainly by the social and cognitive components. For intermediate 
values of w, there is a balance between the two. In this way the search pattern  
becomes like a combination of individual search and social cooperation with their due 
weightages that vary with iterations. During individual search, the swarm has high 
diversity which is an important factor for good performance of any population-based 
optimisation algorithm. By studying the patterns of variation of inertia weight for various 
functions used here, it may be observed that during the initial iterations, w takes very 
large values, so initially individual search is more effective than social search. 
Consequently, the swarm is more diverse and performs better exploration rapidly. So, the 
good regions of search space are quickly identified during first few iterations. In the later 
iterations, the values of inertia weight are relatively small, so the social cooperation is 
given more weightage now, and usual PSO search is performed to exploit the information 
obtained yet. The overall search pattern may be viewed as a swarm starting with zero 
velocities and w = 0.9 which first explore the search space vigorously, sometimes 
searching locally around good positions and in the later iterations concentrates the search 
in good areas found so far. Hence, it can be said that the faster convergence of proposed 
PSO is due to: 
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1 the quick exploration in first few iterations 

2 the reduction in the period of entrapment during the search. 

Also the high SR may be due to the increased diversity of the swarm because now the 
swarm explores the search space more thoroughly. 

4 Conclusions 

In this paper, two inertia weight variants of PSO namely GAIW and LAIW PSO, which 
are based on a nature inspired approach for dynamically adjusting the inertia weight, have 
been investigated. These variants have been tested on 15 scalable problems and results 
thus obtained, have been compared with those obtained by three inertia weight variants 
taken from literature. With the LAIW PSO performing the best and GAIW performing 
the second best among the considered PSO variants, the results show that the proposed 
variants improve the performance of PSO significantly in terms of convergence speed as 
well as computational effort, and hence can be used for different kinds of optimisation 
problems, thus releasing the user from the pain of indulging into extensive experiments 
for finding an appropriate setting of inertia weight. We do not claim that the proposed 
strategy, for adaptation of inertia weight, is best for any problem in general, but it is 
recommended since it is found to be repeatedly giving good results for most of the 
problems studied here and hence it is an appropriate strategy to be used if we talk about 
the overall performance. 

5 Limitations and scope for future work 

As every coin has two faces, our algorithms also have some good aspects as shown above 
as well as some limitations: first is that it increases the number of control parameters by 
using wstart, wend and M for just one parameter w, and the second, that was found during 
later of our study, is that for some functions the value of inertia weight becomes very 
large for many iterations and the swarm goes on searching on the boundary during those 
iterations. Another limitation of this strategy is that due to the explicit use of fitness 
function value f, the behaviour of PSO does no longer remain the same for equivalent 
functions (landscapes). 

Also, the global topology for swarm has been used here, the effect of the proposed 
inertia weight strategies on the PSO with local topology may be somewhat different. 
Although these strategies give very good results for the benchmark problems used in this 
paper, its behaviour on various other benchmarks and real life optimisation problems is a 
matter of further investigation. 
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