
   

  

   

   
 

   

   

 

   

   72 Int. J. Computational Intelligence Studies, Vol. 1, No. 1, 2009    
 

   Copyright © 2009 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Mean particle swarm optimisation for function 
optimisation 

Kusum Deep* and Jagdish Chand Bansal 
Department of Mathematics, 
Indian Institute of Technology Roorkee, 
Roorkee – 247667, India 
E-mail: kusumfma@iitr.ernet.in 
E-mail: jcbansal@gmail.com 
*Corresponding author 

Abstract: In this paper, a new particle swarm optimisation algorithm, called 
MeanPSO, is presented, based on a novel philosophy by modifying the velocity 
update equation. This is done by replacing two terms of original velocity 
update equation by two new terms based on the linear combination of pbest and 
gbest. Its performance is compared with the standard PSO (SPSO) by testing it 
on a set of 15 scalable and 15 nonscalable test problems. Based on the 
numerical and graphical analyses of results it is shown that the MeanPSO 
outperforms the SPSO, in terms of efficiency, reliability, accuracy and stability. 
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1 Introduction 

Mathematical models of many real life problems turn out to be nonlinear in nature, 
having local as well as global optimal solutions. Usually, it is more difficult to obtain 
global optimal solution(s), as compared to local optimal solutions of nonlinear 
optimisation problems, but in many cases it is advantageous and sometimes even 
necessary, to search for the global optimal solution(s). 

In order to determine the global optimal solution of a nonlinear optimisation problem, 
usually two approaches are followed: 
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1 the deterministic approach 

2 the probabilistic approach. 

Deterministic methods extensively use analytical properties such as continuity, 
convexity, differentiability etc. of the objective function and the constraints to locate a 
neighbourhood of the global optimum. It is now established that deterministic methods 
are best suited for a restricted class of functions, namely convex functions, one 
dimensional rational or Lipschitz functions and polynomials etc. whose mathematical 
properties can be easily determined and utilised at specified points or in specified 
intervals. On the other hand, probabilistic approaches rely on computational power and 
try to search the global optima in a probabilistic sense. These methods utilise randomness 
in an efficient way to explore the search space over which the objective function is to be 
optimised. Contrary to general expectation, stochastic methods perform well in most of 
the realistic problems. Although probabilistic methods do not give an absolute guarantee 
of determining the global minima, these methods are sometimes preferred over 
deterministic methods, because they are applicable to a wider class of functions as they 
depend on function evaluations alone and do not assume any mathematical properties of 
the functions involved. 

Particle swarm optimisation (PSO) is a population-based optimisation technique, 
which is an alternative tool to genetic algorithm (GAs) and other evolutionary algorithms 
(EAs) and gained lots of attention in recent years. PSO is a stochastic search technique 
with reduced memory requirement, computationally effective and easier to implement as 
compared to EAs. In 1995 Kennedy and Eberhart (1995) introduced the PSO as a new 
heuristic method. The idea is based on the simulation of the social behaviour of bird flock 
and fish schools. Initially PSO was designed for continuous optimisation problems, but 
later a wide variety of challenging engineering and science applications came into being. 

The rest of the paper is organised as follows: In Section 2, the standard PSO (SPSO) 
is described. In Section 3, a literature review on PSO is carried out. The proposed 
MeanPSO is described in Section 4. In Section 5, the set of benchmark test problems is 
given. In Section 6, analyses of results of computational experiments are discussed and in 
the end conclusions are derived in Section 7. 

2 The SPSO 

The beauty of PSO lies in its simplicity and ease of applicability. The coordinates of each 
particle represent a possible solution associated with two vectors – the position vector 
and the velocity vector. 

Consider the n-dimensional optimisation problem 

Minimise ( ),f x  where : nf R R→  

Corresponding to each feasible solution, the position vector is represented by 
( )1 2 3, , , .,i i i i inx x x x x= …  and the velocity vector is represented by 

( )1 2 3, , , .,i i i i inv v v v v= … . A swarm consists of a number of particles (feasible solutions) 
that proceed (fly) through the search space towards the optimal solution. Each particle 
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updates its position based on its own best exploration, overall best swarm exploration and 
its previous velocity vector according to the following equations: 

1
1 1 2 2( ) ( )k k k k k k

i i i i iv v c r pbest x c r gbest x+ = + − + −  (1) 

1 1k k k
i i ix x v+ += +  (2) 

where 

c1 and c2 are two positive constants called acceleration coefficients. 

r1 and r2 are random numbers, uniformly distributed in [0, 1] 

( )1 2, ,.....,i i i inx x x x=  is the current position of the ith particle 

( )1 2, ,.....,pbest pbest pbest
i ini ipbest x x x=  is the best position of the ith particle achieved based 

on its own experience 

( )1 2, ,.....,gbest gbest gbest
ngbest x x x=  is the position of the best particle based on the overall 

swarm’s experience 

k is the iteration counter 

A constant, maximum velocity (Vmax) is used to arbitrarily limit the velocities of the 
particles and improve the resolution of the search. (Shi and Eberhart, 1998a, 1998b) 
introduced an inertia factor w, in order to overcome the problem of premature 
convergence of PSO. The resulting velocity update equation becomes: 

1
1 1 2 2( ) ( )k k k k k k

i i i i iv wv c r pbest x c r gbest x+ = + − + −  

In this paper, the inertia weight version of PSO is regarded as the SPSO. 
This paper proposes, a new PSO, called MeanPSO, in which the basic velocity update 

equation is modified. The comparison is made with SPSO using thirty benchmark test 
problems of varied difficulty levels. The first problem set, contains 15 problems which 
are scalable in nature whereas second problem set contains 15 problems which are  
non-scalable. The results of the proposed MeanPSO are shown for problem size up to 
500. 

3 Literature review on PSO 

A host of variations of improved versions of PSO is available in literature. They can be 
categorised as follows: 

The first category consists of modifications based on new coefficients in velocity and 
position update equations. Angeline (1998a) showed that the original PSO has poor local 
search capability. The concept of an inertia weight was developed to better control 
exploration and exploitation. The inclusion of an inertia weight in the particle swarm 
optimisation algorithm (MeanPSO) was first reported in the literature in 1998 (Shi and 
Eberhart, 1998a, 1998b). Eberhart and Shi (2000) indicates that the optimal strategy is to 
initially set w to 0.9 and reduce it linearly to 0.4, allowing initial exploration followed by 
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acceleration toward an improved global optimum. Clerc and Kennedy (2002) introduced 
a constriction factor, χ, which improves PSO’s ability to constrain and control velocities. 
Eberhart and Shi (2000) found that χ, combined with constraints on Vmax, significantly 
improved the PSO performance. Although constriction factor version of PSO is faster in 
convergence than linearly decreasing inertia weight version of PSO, but may get stuck at 
the local optima in multi modal functions. 

The second category involves information regarding social sharing. Kennedy and 
Mendes (2002) concluded that the van Neumann neighbourhood topology provides the 
most superior performance. In the variable neighbourhood methodology of Suganthan 
(1999), initially an individual particle constitutes the neighbourhood, but during the later 
generations all the particles are included in the neighbourhood. Mohais et al. (2004) 
proposed dynamically adjusted neighbourhoods in which directed structures were used 
for the topology of the initial population and during the subsequent generations edges of 
the structures were randomly migrated from one source to another. Liang et al. (2004) 
demonstrated the use of a new learning methodology to make particles have different 
learning exemplars for different dimensions. Van den Bergh and Engelbrecht (2004) 
showed how to split the decision vector into several sub vectors, each being allotted to 
their own swarms. Peram et al. (2003) utilised the additional information of the nearby 
higher fitness particle that was selected according to fitness-distance ratio (FDR) 
indicating the ratio of the fitness improvement over the respective distance. Baskar and 
Suganthan (2004) simulated the modified PSO and FDR-PSO concurrently with frequent 
message passing between them. Janson and Middendorf (2005) used dynamic hierarchy 
to define the structure of the neighbourhood. He et al. (2004) introduced passive 
congregation into the velocity update equation. 

Hybridisation with other EAs falls within the third category. PSO was combined with 
the selection operator of GA (Angeline, 1998b). Lovbjerg et al. (2001) combined PSO 
with the concept of breeding and subpopulation. Poli et al. (2005) extended PSO by using 
genetic programming. Zhang and Xie (2003) merged differential evolution operator into 
PSO. Krink and Lovbjerg (2002) combined PSO, GAs and hill climbing. Esquivel and 
Coello Coello (2003), Higasbi and Iba (2003) and Stacey et al. (2003) attempted to 
employ mutation in PSO. Hendtlass (2003) provided a study where the memory of 
particles is extended, in analogy with the pheromone trails of ant colony optimisation. 

Diversity increasing mechanism to prevent convergence to local minima is covered in 
category four. Silva et al. (2002) presented a predator-pray model to maintain population 
diversity. Zhang et al. (2002) re-initialise the velocities of all the particles at a predefined 
extension interval. Krink et al. (2002) suggested several collision strategies to avoid 
crowding of the swarm. Lovbjerg and Krink (2002) suggested self-organised criticality. 
Riget and Vesterstrem (2002) introduced the use of the attractive phase and repulsive 
phase alternately as per a diversity measure. Velocity update equation is modified in 
(Baskar and Suganthan, 2004; Kennedy and Mendes, 2003; Pasupuleti and Battiti, 2006; 
Liu et al., 2004; Wei et al., 2004). A good review of PSO can be found in (Hu et al., 
2004; Banks et al., 2007, 2008). 

4 The proposed MeanPSO 

The motivation behind introducing MeanPSO is that in the velocity update equation 
instead of comparing the particle’s current position with gbest and pbest, it is compared 
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with the linear combinations 
2

k k
ipbest gbest+

 and 
2

k k
ipbest gbest−

 of pbest and gbest. 

Thus, we introduce a new velocity update equation as follows: 

1
1 1 2 22 2

k k k k
k k k ki i
i i i i

pbest gbest pbest gbest
v v c r x c r xω+ ⎛ ⎞ ⎛ ⎞+ −

= + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3)
 

In the velocity update equation of this new PSO the first term represents the current 
velocity of the particle and can be thought of as a momentum term. The second term is 

proportional to the vector 
2

k k
ki
i

pbest gbest
x

⎛ ⎞+
−⎜ ⎟⎜ ⎟

⎝ ⎠
 and is responsible for the attraction of 

particle’s current position towards the mean of the positive direction of global best 
position (gbest) and positive direction of its own best position (pbest). The third term is 

proportional to the vector 
2

k k
ki
i

pbest gbest
x

⎛ ⎞−
−⎜ ⎟⎜ ⎟

⎝ ⎠
 and is responsible for the attraction of 

particle’s current position towards the mean of the positive direction of its own best 
position (pbest) and the negative direction of the global best position (–gbest). Clearly, 
MeanPSO seems to be suitable name for this modified PSO. The relative position of the 
new positions generated by SPSO and MeanPSO can be visualised in Figure 1. 

Figure 1 Comparative movement of a particle in SPSO and MeanPSO 
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The pseudo code of MeanPSO is shown below: 

Algorithm MeanPSO: 

For t= 1 to the max. bound of the number on iterations, 

For i=1 to the swarm size, 

For j=1 to the problem dimensionality, 

Apply the velocity update equation (3); 

Update Position using equation (2); 

End- for-j; 

Compute fitness of updated position; 

If needed, update historical information for pbest and gbest; 

End-for-i; 

Terminate if gbest meets problem requirements; 

End-for-t; 

End algorithm. 

5 The test bed 

Many times it is found that the evaluation of a proposed algorithm is evaluated only on a 
few benchmark problems. However, in this paper we consider a test bed of thirty 
benchmark problems with varying difficulty levels and problem size. The relative 
performance of SPSO and MeanPSO is evaluated on two kinds of problem sets. Problem 
Set 1 consists of 15 scalable problems, i.e., those problems in which the dimension of the 
problems can be increased/decreased at will. In general, the complexity of the problem 
increases as the problem size is increased. Problem Set 2 consists of those problems in 
which the problem size is fixed, but the problems have many local as well as global 
optima. The Problem Set 1 is shown in Table 1 and Problem Set 2 is shown in Table 2. 
Table 1 Details of Problem Set 1 

Serial 
no. 

Function 
name Expression Search space 

Objective 
function 

value 

1 Ackley 
( )

1 2

1

1

1

Min ( ) 20 exp 0.02

exp cos 2 20

n
i

i
n

i
i

f x n x

n x eπ

−

=

−

=

= − − ∑

− + +∑

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

30 30ix− ≤ ≤
 

0 

2 Cosine 
mixture 

2

1 1
Min )

n n
i i

i i
 f(x)  0.1 cos(5 x xπ

= =
= − +∑ ∑  1 1ix− ≤ ≤  –0.1× (n)  
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Table 1 Details of Problem Set 1 (continued) 

Serial 
no. 

Function 
name Expression Search space 

Objective 
function 

value 

3 Exponential 2

1
Min exp 0.5

n
i

i
 f(x)   x

=
= − − ∑⎛ ⎞

⎜ ⎟
⎝ ⎠

 1 1ix− ≤ ≤  –1 

4 Griewank 
( ) 2

1

1

1
M inf 1

4000

cos               

n
i

i
n i

i

x x

x

i

=

=

= + ∑

− ∏
⎛ ⎞
⎜ ⎟
⎝ ⎠

 600 600ix− ≤ ≤
 

0 

5 Rastrigin ( )2

1

Min  ( ) 10

10 cos 2
n

i i
i

f x n

x xπ
=

=

+ −∑ ⎡ ⎤
⎣ ⎦

 5.12
5.12

ix− ≤
≤

 0 

6 Function 6 ( )
( )

221 1
21

100
Min ( )

1

n i i

i
i

x x
f x

x

−
+

=

−
= ∑

+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

 30 30ix− ≤ ≤  0 

7 Zakharov’s 

2
2

1
4

Min ( )
2

2

1

            
1

n
i

i

i
f x x x

i
x

n
ii

n
ii

=
= +∑ ∑

+ ∑

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥=⎣ ⎦
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥=⎣ ⎦

 5.12
5.12

ix− ≤
≤

 0 

8 Sphere 2

1
Min ( )

n
i

i
f x x

=
= ∑  5.12

5.12
ix− ≤

≤
 0 

9 

Axis 
parallel 
hyper 

ellipsoid 

2

1
Min ( )

n
i

i
f x ix

=
= ∑  5.12

5.12
ix− ≤

≤
 0 

10 Schwefel 3 
1 1

Min ( )
nn

i i
i i

f x x x
= =

= +∑ ∏  10 10ix− ≤ ≤  0 

11 Dejong 
noise ( )( )Min ( ) 0,14

1
f x x rand

n
ii

= +∑
=

 10 10ix− ≤ ≤  0 

12 Schwefel 4 { }Min ( ) ,1if x Max x i n= ≤ ≤  100 100ix− ≤ ≤
 

0 

13 Cigar 2 2

2
Min ( ) 100000

n
i i

i
f x x x

=
= + ∑  10 10ix− ≤ ≤  0 
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Table 1 Details of Problem Set 1 (continued) 

Serial 
no. 

Function 
name Expression Search space 

Objective 
function 

value 

14 Brown 3 
( )( )

( )( )
1

1

1

Min ( )
1

2
2 1

2
2

1

n

i

x
x

f x
x

x

i
i

i
i

−

=

+

= ∑
+

+

⎡ ⎤
+⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 1 4ix− ≤ ≤  0 

15 Function 15 ( )2 2

1
Min ( ) 0.2 0.1 sin 2

n
i i i

i
f x x x x

=
= +∑  10 10ix− ≤ ≤  0 

Table 2 Details of Problem Set 2 

Serial 
no. Function name Expression Search space 

Objective 
function 

value 

1 Becker and 
Lago ( ) ( )2 2

1 2Min ( ) 5 5f x x x= − + −  1
2

10 ,
10

x
x
− ≤

≤
 0 

2 Bohachevsky 1 ( )
( )

2 2
1 2 1

2

Min ( ) 2 0.3cos 3
                  0.4 cos 4 0.7

f x x x x
x

π
π

= + −
− +

 1
2

50 ,
50

x
x
− ≤

≤
 0 

3 Bohachevsky 2 ( ) ( )
2 2
1 2
1 2

Min ( ) 2
0.3cos 3 cos 4 0.3

f x x x
x xπ π

= +
− +

 1
2

50 ,
50

x
x
− ≤

≤  0 

4 Branin 

2 2
2 1 1

1

Min ( ) ( )
                  (1 ) cos( )  ,

5.1 51, ,   ,   
4

16,   10,  
8

2

f x a x bx cx d
g h x g

a b c

d g h

ππ

π

= − + −
+ − +

= = =

= = =

 15 100
152

x
x

− ≤ ≤
≤ ≤  5

4π  

5 Eggcrate ( )
2 2
1 2Min ( )

25 sin sin2 2
1 2

f x x x

x x

= +

+ +
 12 2xπ π− ≤ ≤  0 

6 Helical Valley 

2
2 2

32 2
1 2

( 10 )
Min ( ) 100 2)( ( 1)

1 1tan               
2
if 0

                       
1 1 1tan         

22
if 0

2
1

1
2
1

2

x
f x x

x x
x

x
x

Where
x

x
x

θ

π

θ

π

−
= +

+ + −

−

≥
=

− +

<

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

 

1 2
3

10 , ,
10

x x
x
− ≤

≤  0 

7 Kowalik 
2

11 1 2
21 3 4

(1 )
Min ( )

(1 )
i

i
i i i

x x b
f x a

x b x b=

+
= −∑

+ +

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 0 0.42ix≤ ≤  
43.0748 10−×
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Table 2 Details of Problem Set 2 (continued) 

Serial 
no. Function name Expression Search space 

Objective 
function 

value 

8 Miele and 
Cantrell 

4
1 2

6
2 3

4 8
3 4 1

Min ( ) (exp( ) )
100( )
(tan( ))

f x x x
x x
x x x

= −
+ −
+ − +

 1 1ix− ≤ ≤  0 

9 Modified 
Rosenbrock 

2 2
2 1

22
2 1

Min ( ) 100( )

6.4( 0.5) 0.6

f x x x

x x

= −

+ − − −⎡ ⎤
⎣ ⎦

 
5 ,

5
1

2

x
x
− ≤

≤  0 

10 Easom ( )
1 2

2 2
1 2

Min ( ) cos( ) cos( )
exp ( ) ( )

f x x x
x xπ π
= −

− − − −  1
2

10 ,
10

x
x
− ≤

≤  –1 

11 Periodic 
2 2

1 2
2 2
1 2

Min ( ) 1 sin sin
0.1exp( )

f x x x
x x
= + +

− − −
 1

2

10 ,
10

x
x
− ≤

≤  0.9 

12 Powell’s 

2
1 1

2
3 4

4
2 3

4
1 4

Min ( ) ( 10 )
               5( )
               ( 2 )
              10( )

f x x x
x x

x x
x x

= +
+ −
+ −
+ −

 10 10ix− ≤ ≤  0 

13 Camel back-3 
2 4
1 1

6 2
1 1 2 2

Min ( ) 2 1.05
1
6

f x x x

x x x x

= +

+ + +
 1

2

5 ,
5
x

x
− ≤

≤  0 

14 Camel back-6 
2 4 6
1 1 1

2
1 2 2

1
Min ( ) 4 2.1

3
4 4 4

2

f x x x x

x x x x

= + +

+ − +
 1

2

5 ,
5
x

x
− ≤

≤  –1.0316 

15 Aluffi-Pentini’s 
4 2
1 1

2
1 2

Min ( ) 0.25 0.5
0.1 0.5

f x x x
x x

= −
+ +

 1
2

10 ,
10

x
x
− ≤

≤  –0.3523 

6 Analyses of results 

The SPSO and the MeanPSO are coded in C++ and implemented on Pentium IV 2.4 GHz 
machine with 512 MB RAM under WINXP platform. Thirty independent runs with 
different seed for the generation of random numbers are taken. However, the same seed is 
used for generating the initial swarm for SPSO and MeanPSO for the ith run, where  
i = 1, 2, . . . , 30. A run is said to be a successful run if the best objective function value 
found in that run lies within 1% accuracy of the best known objective function value of 
that problem. The maximum number of function evaluations is fixed to be 30,000. The 
swarm size is fixed to 20. The inertia weight w is 0.7 and the acceleration coefficients for 
SPSO and MeanPSO are set to be 1 2 2.c c= =  

A number of criterions are used to evaluate the performance of SPSO with MeanPSO. 
The percentage of success is used to evaluate the reliability. The average number of 
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function evaluations of successful runs and the average computational time of the 
successful runs, are used to evaluate the cost. For problem Set 1, by fixing the problem 
size ten, this information is recorded in Table 3. The quality of the solution obtained is 
measured by the minimum, maximum, mean and standard deviation of the objective 
function values out of thirty runs. This is shown in Table 4. The corresponding 
information for Problem Set 2 is shown in Tables 5 and 6, respectively. 
Table 3 Comparative results of SPSO and MeanPSO for Problem Set 1 

No. of successful runs 
out of 30 runs 

Average function 
evaluations of successful 

runs 

Average computational 
time in seconds of 

successful runs 
Problem 
no. 

SPSO MeanPSO SPSO MeanPSO SPSO MeanPSO 
1 0 30 - 973 - 0.1697 
2 30 30 3,788 478 0.5822 0.0776 
3 30 30 1,515 268 0.2974 0.0469 
4 0 30 - 1,889 - 0.3531 
5 0 30 - 1,281 - 0.2530 
6 5 30 17,126 1,003 1.3094 0.1609 
7 27 30 11,020 685 0.9620 0.1359 
8 30 30 3,989 519 0.5982 0.0838 
9 30 30 3,928 557 0.5924 0.0874 
10 26 30 7,907 931 0.8077 0.1327 
11 30 30 3,551 397 0.5120 0.0687 
12 11 30 26,418 1,058 1.5012 0.1734 
13 30 30 10,437 1,217 0.8609 0.1815 
14 12 30 3,241 492 0.5496 0.0806 
15 30 30 4,378 483 0.6366 0.0776 

From Table 3, it is observed that SPSO could not solve three problems at all, whereas 
MeanPSO solved all the problems with 100 % success rate. In five problems SPSO could 
not give 100% success rate, but MeanPSO solved them with 100% success rate. In the 
remaining seven problems both showed 100% success rate. In all the 15 problems, 
MeanPSO required lesser number of function calls and lesser computational time as 
compared to SPSO. In observing Table 4, it can be seen that MeanPSO gives a better 
quality of solutions as compared to SPSO. Thus, for the scalable problems MeanPSO 
outperforms SPSO with respect to efficiency, reliability, cost and robustness. 

From Table 5, it is observed that SPSO could not solve three problems with 100 % 
success, whereas MeanPSO solved all the problems with 100 % success. In five problems 
SPSO requires lesser function evaluations, whereas in 10 problems MeanPSO requires 
lesser function evaluations. SPSO requires lesser computational time in five problems 
whereas MeanPSO requires lesser computational time in 10 problems. Also Table 6 
shows that the quality of the solution obtained by MeanPSO is superior to SPSO. Thus 
for non scalable problems as well, MeanPSO outperforms SPSO. 
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Table 4 Comparative objective function value obtained in 30 runs by SPSO and MeanPSO for 
Problem Set 1 
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Table 5 Comparative results of SPSO and MeanPSO for Problem Set 2 
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Table 6 Comparative objective function value obtained in 30 runs by SPSO and MeanPSO for 
Problem Set 2 
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To observe the consolidated effect of percentage of success, average number of function 
evaluations and average computational time on SPSO and MeanPSO a performance 
index (PI) is used as given in (Deep and Thakur, 2007). 

The relative performance of an algorithm using this PI is calculated as: 
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1 2 pi , ,...,N=  

Sri Number of successful runs of ith problem 

Tri Total number of runs of ith problem 

Mfi Minimum of average number of function evaluations of successful runs used by all 
algorithms in obtaining the solution of ith problem 

Afi Average number of function evaluations of successful runs used by an algorithm in 
obtaining the solution of ith problem 

Mti Minimum of average time used by all the algorithms in obtaining the solution of 
ith problem 

Ati Average computational time used by an algorithm in obtaining the solution of ith 
problem 

Npi Total number of problems analysed. 

k1, k2 and k3 (k1 + k2 + k3 = 1 and 0 ≤ k1, k2, k3 ≤ 1) are the weights assigned to percentage 
of success, average number of function evaluations and execution time of successful runs, 
respectively. From above definition it is clear that PI is a function of k1, k2 and k3. Since, 
k1 + k2 + k3 = 1, one of ki, i = 1, 2, 3 could be eliminated to reduce the number of dependent 
variables from the expression of PI. But it is still difficult to analyse the behaviour of PI, 
because the surface plots of PI for SPSO and MeanPSO are overlapping and it is difficult 
to visualise them. So, we adopt the same methodology as given in (Deep and Thakur, 
2007) i.e., equal weights are assigned to two terms at a time in the PI expression. This 
way PI becomes a function of one variable. The resultant cases are as follows 
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The PI is obtained for SPSO and MeanPSO for all the thirty problems and is shown in 
Figure 2. It is clear that the proposed MeanPSO outperforms the SPSO. 
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Figure 2b Performance index when 2 1 3
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Figure 2c Performance index when 3 1 2
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The next task is to investigate the stability of the MeanPSO by observing its effect when 
the size of the problems is increased. For this purpose, all 15 scalable problems are 
selected and their size is varied from 100 to 500. The average number of function 
evaluations when problem size is increased from 100 to 500 is shown in Figure 5 for all 
problems of Problem Set 1. The swarm size is 10, 20, 30, 40 and 50 for problem size 100, 
200, 300, 400 and 500, respectively. 

From Figure 5, it is observed that MeanPSO requires comparatively very less number 
of function evaluations even for large scale problems. 

Figure 3 Convergence graphs of Problems Set 1 
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Figure 3 Convergence graphs of Problems Set 1 (continued) 
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Figure 4 Convergence graphs of Problems Set 2 
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Figure 4 Convergence graphs of Problems Set 2 (continued) 
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Figure 5 Required number of function evaluations by MeanPSO when problem size is increased 
from 100 to 500 in problem Set 1 
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7 Conclusions 

In this paper, a new PSO approach for function optimisation is presented. It is based on a 
basic change in the velocity update equation. Two terms in the original velocity update 
equation of PSO are replaced by the two new terms containing the linear combination of 
pbest and gbest. It is tested on 15 scalable problems and 15 nonscalable problems. It is 
shown that the new MeanPSO outperforms SPSO in terms of efficiency, accuracy, 
reliability and robustness. Particularly for large size problems MeanPSO outperforms 
SPSO. As a future work and as suggested by the anonymous reviewer one can also take 
the median of corresponding directions of all the particles in the current swarm in place 
of mean. In this paper the effect of change of parameters in MeanPSO is not explored. In 
a future study parameters fine tuning may be carried out for better performance. Also the 
application of MeanPSO to the real world problems would be interesting as a future 
research. 
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