

 72 Int. J. Computational Intelligence Studies, Vol. 1, No. 1, 2009

 Copyright © 2009 Inderscience Enterprises Ltd.

Mean particle swarm optimisation for function
optimisation

Kusum Deep* and Jagdish Chand Bansal
Department of Mathematics,
Indian Institute of Technology Roorkee,
Roorkee – 247667, India
E-mail: kusumfma@iitr.ernet.in
E-mail: jcbansal@gmail.com
*Corresponding author

Abstract: In this paper, a new particle swarm optimisation algorithm, called
MeanPSO, is presented, based on a novel philosophy by modifying the velocity
update equation. This is done by replacing two terms of original velocity
update equation by two new terms based on the linear combination of pbest and
gbest. Its performance is compared with the standard PSO (SPSO) by testing it
on a set of 15 scalable and 15 nonscalable test problems. Based on the
numerical and graphical analyses of results it is shown that the MeanPSO
outperforms the SPSO, in terms of efficiency, reliability, accuracy and stability.

Keywords: particle swarm optimisation; PSO; MeanPSO; global optimisation;
velocity update equation.

Reference to this paper should be made as follows: Deep, K. and Bansal, J.C.
(2009) ‘Mean particle swarm optimisation for function optimisation’, Int. J.
Computational Intelligence Studies, Vol. 1, No. 1, pp.72–92.

Biographical notes: Kusum Deep is Associate Professor in the Department of
Mathematics, Indian Institute of Technology Roorkee, India. Her research
interests are in numerical optimisation including evolutionary computations:
genetic algorithms, memetic algorithms, particle swarm optimisation, etc. She
has more than 50 research papers in journals/conferences. She holds a number
of national and international awards.

Jagdish Chand Bansal, is currently a PhD student at the Indian Institute of
Technology Roorkee, India. His research interests are in particle swarm
optimisation and genetic algorithm.

1 Introduction

Mathematical models of many real life problems turn out to be nonlinear in nature,
having local as well as global optimal solutions. Usually, it is more difficult to obtain
global optimal solution(s), as compared to local optimal solutions of nonlinear
optimisation problems, but in many cases it is advantageous and sometimes even
necessary, to search for the global optimal solution(s).

In order to determine the global optimal solution of a nonlinear optimisation problem,
usually two approaches are followed:

 Mean particle swarm optimisation for function optimisation 73

1 the deterministic approach

2 the probabilistic approach.

Deterministic methods extensively use analytical properties such as continuity,
convexity, differentiability etc. of the objective function and the constraints to locate a
neighbourhood of the global optimum. It is now established that deterministic methods
are best suited for a restricted class of functions, namely convex functions, one
dimensional rational or Lipschitz functions and polynomials etc. whose mathematical
properties can be easily determined and utilised at specified points or in specified
intervals. On the other hand, probabilistic approaches rely on computational power and
try to search the global optima in a probabilistic sense. These methods utilise randomness
in an efficient way to explore the search space over which the objective function is to be
optimised. Contrary to general expectation, stochastic methods perform well in most of
the realistic problems. Although probabilistic methods do not give an absolute guarantee
of determining the global minima, these methods are sometimes preferred over
deterministic methods, because they are applicable to a wider class of functions as they
depend on function evaluations alone and do not assume any mathematical properties of
the functions involved.

Particle swarm optimisation (PSO) is a population-based optimisation technique,
which is an alternative tool to genetic algorithm (GAs) and other evolutionary algorithms
(EAs) and gained lots of attention in recent years. PSO is a stochastic search technique
with reduced memory requirement, computationally effective and easier to implement as
compared to EAs. In 1995 Kennedy and Eberhart (1995) introduced the PSO as a new
heuristic method. The idea is based on the simulation of the social behaviour of bird flock
and fish schools. Initially PSO was designed for continuous optimisation problems, but
later a wide variety of challenging engineering and science applications came into being.

The rest of the paper is organised as follows: In Section 2, the standard PSO (SPSO)
is described. In Section 3, a literature review on PSO is carried out. The proposed
MeanPSO is described in Section 4. In Section 5, the set of benchmark test problems is
given. In Section 6, analyses of results of computational experiments are discussed and in
the end conclusions are derived in Section 7.

2 The SPSO

The beauty of PSO lies in its simplicity and ease of applicability. The coordinates of each
particle represent a possible solution associated with two vectors – the position vector
and the velocity vector.

Consider the n-dimensional optimisation problem

Minimise (),f x where : nf R R→

Corresponding to each feasible solution, the position vector is represented by
()1 2 3, , , .,i i i i inx x x x x= … and the velocity vector is represented by

()1 2 3, , , .,i i i i inv v v v v= … . A swarm consists of a number of particles (feasible solutions)
that proceed (fly) through the search space towards the optimal solution. Each particle

 74 K. Deep and J.C. Bansal

updates its position based on its own best exploration, overall best swarm exploration and
its previous velocity vector according to the following equations:

1
1 1 2 2() ()k k k k k k

i i i i iv v c r pbest x c r gbest x+ = + − + − (1)

1 1k k k
i i ix x v+ += + (2)

where

c1 and c2 are two positive constants called acceleration coefficients.

r1 and r2 are random numbers, uniformly distributed in [0, 1]

()1 2, ,.....,i i i inx x x x= is the current position of the ith particle

()1 2, ,.....,pbest pbest pbest
i ini ipbest x x x= is the best position of the ith particle achieved based

on its own experience

()1 2, ,.....,gbest gbest gbest
ngbest x x x= is the position of the best particle based on the overall

swarm’s experience

k is the iteration counter

A constant, maximum velocity (Vmax) is used to arbitrarily limit the velocities of the
particles and improve the resolution of the search. (Shi and Eberhart, 1998a, 1998b)
introduced an inertia factor w, in order to overcome the problem of premature
convergence of PSO. The resulting velocity update equation becomes:

1
1 1 2 2() ()k k k k k k

i i i i iv wv c r pbest x c r gbest x+ = + − + −

In this paper, the inertia weight version of PSO is regarded as the SPSO.
This paper proposes, a new PSO, called MeanPSO, in which the basic velocity update

equation is modified. The comparison is made with SPSO using thirty benchmark test
problems of varied difficulty levels. The first problem set, contains 15 problems which
are scalable in nature whereas second problem set contains 15 problems which are
non-scalable. The results of the proposed MeanPSO are shown for problem size up to
500.

3 Literature review on PSO

A host of variations of improved versions of PSO is available in literature. They can be
categorised as follows:

The first category consists of modifications based on new coefficients in velocity and
position update equations. Angeline (1998a) showed that the original PSO has poor local
search capability. The concept of an inertia weight was developed to better control
exploration and exploitation. The inclusion of an inertia weight in the particle swarm
optimisation algorithm (MeanPSO) was first reported in the literature in 1998 (Shi and
Eberhart, 1998a, 1998b). Eberhart and Shi (2000) indicates that the optimal strategy is to
initially set w to 0.9 and reduce it linearly to 0.4, allowing initial exploration followed by

 Mean particle swarm optimisation for function optimisation 75

acceleration toward an improved global optimum. Clerc and Kennedy (2002) introduced
a constriction factor, χ, which improves PSO’s ability to constrain and control velocities.
Eberhart and Shi (2000) found that χ, combined with constraints on Vmax, significantly
improved the PSO performance. Although constriction factor version of PSO is faster in
convergence than linearly decreasing inertia weight version of PSO, but may get stuck at
the local optima in multi modal functions.

The second category involves information regarding social sharing. Kennedy and
Mendes (2002) concluded that the van Neumann neighbourhood topology provides the
most superior performance. In the variable neighbourhood methodology of Suganthan
(1999), initially an individual particle constitutes the neighbourhood, but during the later
generations all the particles are included in the neighbourhood. Mohais et al. (2004)
proposed dynamically adjusted neighbourhoods in which directed structures were used
for the topology of the initial population and during the subsequent generations edges of
the structures were randomly migrated from one source to another. Liang et al. (2004)
demonstrated the use of a new learning methodology to make particles have different
learning exemplars for different dimensions. Van den Bergh and Engelbrecht (2004)
showed how to split the decision vector into several sub vectors, each being allotted to
their own swarms. Peram et al. (2003) utilised the additional information of the nearby
higher fitness particle that was selected according to fitness-distance ratio (FDR)
indicating the ratio of the fitness improvement over the respective distance. Baskar and
Suganthan (2004) simulated the modified PSO and FDR-PSO concurrently with frequent
message passing between them. Janson and Middendorf (2005) used dynamic hierarchy
to define the structure of the neighbourhood. He et al. (2004) introduced passive
congregation into the velocity update equation.

Hybridisation with other EAs falls within the third category. PSO was combined with
the selection operator of GA (Angeline, 1998b). Lovbjerg et al. (2001) combined PSO
with the concept of breeding and subpopulation. Poli et al. (2005) extended PSO by using
genetic programming. Zhang and Xie (2003) merged differential evolution operator into
PSO. Krink and Lovbjerg (2002) combined PSO, GAs and hill climbing. Esquivel and
Coello Coello (2003), Higasbi and Iba (2003) and Stacey et al. (2003) attempted to
employ mutation in PSO. Hendtlass (2003) provided a study where the memory of
particles is extended, in analogy with the pheromone trails of ant colony optimisation.

Diversity increasing mechanism to prevent convergence to local minima is covered in
category four. Silva et al. (2002) presented a predator-pray model to maintain population
diversity. Zhang et al. (2002) re-initialise the velocities of all the particles at a predefined
extension interval. Krink et al. (2002) suggested several collision strategies to avoid
crowding of the swarm. Lovbjerg and Krink (2002) suggested self-organised criticality.
Riget and Vesterstrem (2002) introduced the use of the attractive phase and repulsive
phase alternately as per a diversity measure. Velocity update equation is modified in
(Baskar and Suganthan, 2004; Kennedy and Mendes, 2003; Pasupuleti and Battiti, 2006;
Liu et al., 2004; Wei et al., 2004). A good review of PSO can be found in (Hu et al.,
2004; Banks et al., 2007, 2008).

4 The proposed MeanPSO

The motivation behind introducing MeanPSO is that in the velocity update equation
instead of comparing the particle’s current position with gbest and pbest, it is compared

 76 K. Deep and J.C. Bansal

with the linear combinations
2

k k
ipbest gbest+

 and
2

k k
ipbest gbest−

 of pbest and gbest.

Thus, we introduce a new velocity update equation as follows:

1
1 1 2 22 2

k k k k
k k k ki i
i i i i

pbest gbest pbest gbest
v v c r x c r xω+ ⎛ ⎞ ⎛ ⎞+ −

= + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3)

In the velocity update equation of this new PSO the first term represents the current
velocity of the particle and can be thought of as a momentum term. The second term is

proportional to the vector
2

k k
ki
i

pbest gbest
x

⎛ ⎞+
−⎜ ⎟⎜ ⎟

⎝ ⎠
 and is responsible for the attraction of

particle’s current position towards the mean of the positive direction of global best
position (gbest) and positive direction of its own best position (pbest). The third term is

proportional to the vector
2

k k
ki
i

pbest gbest
x

⎛ ⎞−
−⎜ ⎟⎜ ⎟

⎝ ⎠
 and is responsible for the attraction of

particle’s current position towards the mean of the positive direction of its own best
position (pbest) and the negative direction of the global best position (–gbest). Clearly,
MeanPSO seems to be suitable name for this modified PSO. The relative position of the
new positions generated by SPSO and MeanPSO can be visualised in Figure 1.

Figure 1 Comparative movement of a particle in SPSO and MeanPSO

Notes: Movement of SPSO
 Movement of MeanPSO

Current Position

Gbest

Pbest + Gbest

Pbest

-Gbest

Pbest - Gbest

SPSO
MeanPSO

 Mean particle swarm optimisation for function optimisation 77

The pseudo code of MeanPSO is shown below:

Algorithm MeanPSO:

For t= 1 to the max. bound of the number on iterations,

For i=1 to the swarm size,

For j=1 to the problem dimensionality,

Apply the velocity update equation (3);

Update Position using equation (2);

End- for-j;

Compute fitness of updated position;

If needed, update historical information for pbest and gbest;

End-for-i;

Terminate if gbest meets problem requirements;

End-for-t;

End algorithm.

5 The test bed

Many times it is found that the evaluation of a proposed algorithm is evaluated only on a
few benchmark problems. However, in this paper we consider a test bed of thirty
benchmark problems with varying difficulty levels and problem size. The relative
performance of SPSO and MeanPSO is evaluated on two kinds of problem sets. Problem
Set 1 consists of 15 scalable problems, i.e., those problems in which the dimension of the
problems can be increased/decreased at will. In general, the complexity of the problem
increases as the problem size is increased. Problem Set 2 consists of those problems in
which the problem size is fixed, but the problems have many local as well as global
optima. The Problem Set 1 is shown in Table 1 and Problem Set 2 is shown in Table 2.
Table 1 Details of Problem Set 1

Serial
no.

Function
name Expression Search space

Objective
function

value

1 Ackley
()

1 2

1

1

1

Min () 20 exp 0.02

exp cos 2 20

n
i

i
n

i
i

f x n x

n x eπ

−

=

−

=

= − − ∑

− + +∑

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

30 30ix− ≤ ≤

0

2 Cosine
mixture

2

1 1
Min)

n n
i i

i i
 f(x) 0.1 cos(5 x xπ

= =
= − +∑ ∑ 1 1ix− ≤ ≤ –0.1× (n)

 78 K. Deep and J.C. Bansal

Table 1 Details of Problem Set 1 (continued)

Serial
no.

Function
name Expression Search space

Objective
function

value

3 Exponential 2

1
Min exp 0.5

n
i

i
 f(x) x

=
= − − ∑⎛ ⎞

⎜ ⎟
⎝ ⎠

 1 1ix− ≤ ≤ –1

4 Griewank
() 2

1

1

1
M inf 1

4000

cos

n
i

i
n i

i

x x

x

i

=

=

= + ∑

− ∏
⎛ ⎞
⎜ ⎟
⎝ ⎠

 600 600ix− ≤ ≤

0

5 Rastrigin ()2

1

Min () 10

10 cos 2
n

i i
i

f x n

x xπ
=

=

+ −∑ ⎡ ⎤
⎣ ⎦

 5.12
5.12

ix− ≤
≤

 0

6 Function 6 ()
()

221 1
21

100
Min ()

1

n i i

i
i

x x
f x

x

−
+

=

−
= ∑

+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

 30 30ix− ≤ ≤ 0

7 Zakharov’s

2
2

1
4

Min ()
2

2

1

1

n
i

i

i
f x x x

i
x

n
ii

n
ii

=
= +∑ ∑

+ ∑

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥=⎣ ⎦
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥=⎣ ⎦

 5.12
5.12

ix− ≤
≤

 0

8 Sphere 2

1
Min ()

n
i

i
f x x

=
= ∑ 5.12

5.12
ix− ≤

≤
 0

9

Axis
parallel
hyper

ellipsoid

2

1
Min ()

n
i

i
f x ix

=
= ∑ 5.12

5.12
ix− ≤

≤
 0

10 Schwefel 3
1 1

Min ()
nn

i i
i i

f x x x
= =

= +∑ ∏ 10 10ix− ≤ ≤ 0

11 Dejong
noise ()()Min () 0,14

1
f x x rand

n
ii

= +∑
=

 10 10ix− ≤ ≤ 0

12 Schwefel 4 { }Min () ,1if x Max x i n= ≤ ≤ 100 100ix− ≤ ≤

0

13 Cigar 2 2

2
Min () 100000

n
i i

i
f x x x

=
= + ∑ 10 10ix− ≤ ≤ 0

 Mean particle swarm optimisation for function optimisation 79

Table 1 Details of Problem Set 1 (continued)

Serial
no.

Function
name Expression Search space

Objective
function

value

14 Brown 3
()()

()()
1

1

1

Min ()
1

2
2 1

2
2

1

n

i

x
x

f x
x

x

i
i

i
i

−

=

+

= ∑
+

+

⎡ ⎤
+⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 1 4ix− ≤ ≤ 0

15 Function 15 ()2 2

1
Min () 0.2 0.1 sin 2

n
i i i

i
f x x x x

=
= +∑ 10 10ix− ≤ ≤ 0

Table 2 Details of Problem Set 2

Serial
no. Function name Expression Search space

Objective
function

value

1 Becker and
Lago () ()2 2

1 2Min () 5 5f x x x= − + − 1
2

10 ,
10

x
x
− ≤

≤
 0

2 Bohachevsky 1 ()
()

2 2
1 2 1

2

Min () 2 0.3cos 3
 0.4 cos 4 0.7

f x x x x
x

π
π

= + −
− +

 1
2

50 ,
50

x
x
− ≤

≤
 0

3 Bohachevsky 2 () ()
2 2
1 2
1 2

Min () 2
0.3cos 3 cos 4 0.3

f x x x
x xπ π

= +
− +

 1
2

50 ,
50

x
x
− ≤

≤ 0

4 Branin

2 2
2 1 1

1

Min () ()
 (1) cos() ,

5.1 51, , ,
4

16, 10,
8

2

f x a x bx cx d
g h x g

a b c

d g h

ππ

π

= − + −
+ − +

= = =

= = =

 15 100
152

x
x

− ≤ ≤
≤ ≤ 5

4π

5 Eggcrate ()
2 2
1 2Min ()

25 sin sin2 2
1 2

f x x x

x x

= +

+ +
 12 2xπ π− ≤ ≤ 0

6 Helical Valley

2
2 2

32 2
1 2

(10)
Min () 100 2)((1)

1 1tan
2
if 0

1 1 1tan

22
if 0

2
1

1
2
1

2

x
f x x

x x
x

x
x

Where
x

x
x

θ

π

θ

π

−
= +

+ + −

−

≥
=

− +

<

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

1 2
3

10 , ,
10

x x
x
− ≤

≤ 0

7 Kowalik
2

11 1 2
21 3 4

(1)
Min ()

(1)
i

i
i i i

x x b
f x a

x b x b=

+
= −∑

+ +

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 0 0.42ix≤ ≤
43.0748 10−×

 80 K. Deep and J.C. Bansal

Table 2 Details of Problem Set 2 (continued)

Serial
no. Function name Expression Search space

Objective
function

value

8 Miele and
Cantrell

4
1 2

6
2 3

4 8
3 4 1

Min () (exp())
100()
(tan())

f x x x
x x
x x x

= −
+ −
+ − +

 1 1ix− ≤ ≤ 0

9 Modified
Rosenbrock

2 2
2 1

22
2 1

Min () 100()

6.4(0.5) 0.6

f x x x

x x

= −

+ − − −⎡ ⎤
⎣ ⎦

5 ,

5
1

2

x
x
− ≤

≤ 0

10 Easom ()
1 2

2 2
1 2

Min () cos() cos()
exp () ()

f x x x
x xπ π
= −

− − − − 1
2

10 ,
10

x
x
− ≤

≤ –1

11 Periodic
2 2

1 2
2 2
1 2

Min () 1 sin sin
0.1exp()

f x x x
x x
= + +

− − −
 1

2

10 ,
10

x
x
− ≤

≤ 0.9

12 Powell’s

2
1 1

2
3 4

4
2 3

4
1 4

Min () (10)
 5()
 (2)
 10()

f x x x
x x

x x
x x

= +
+ −
+ −
+ −

 10 10ix− ≤ ≤ 0

13 Camel back-3
2 4
1 1

6 2
1 1 2 2

Min () 2 1.05
1
6

f x x x

x x x x

= +

+ + +
 1

2

5 ,
5
x

x
− ≤

≤ 0

14 Camel back-6
2 4 6
1 1 1

2
1 2 2

1
Min () 4 2.1

3
4 4 4

2

f x x x x

x x x x

= + +

+ − +
 1

2

5 ,
5
x

x
− ≤

≤ –1.0316

15 Aluffi-Pentini’s
4 2
1 1

2
1 2

Min () 0.25 0.5
0.1 0.5

f x x x
x x

= −
+ +

 1
2

10 ,
10

x
x
− ≤

≤ –0.3523

6 Analyses of results

The SPSO and the MeanPSO are coded in C++ and implemented on Pentium IV 2.4 GHz
machine with 512 MB RAM under WINXP platform. Thirty independent runs with
different seed for the generation of random numbers are taken. However, the same seed is
used for generating the initial swarm for SPSO and MeanPSO for the ith run, where
i = 1, 2, . . . , 30. A run is said to be a successful run if the best objective function value
found in that run lies within 1% accuracy of the best known objective function value of
that problem. The maximum number of function evaluations is fixed to be 30,000. The
swarm size is fixed to 20. The inertia weight w is 0.7 and the acceleration coefficients for
SPSO and MeanPSO are set to be 1 2 2.c c= =

A number of criterions are used to evaluate the performance of SPSO with MeanPSO.
The percentage of success is used to evaluate the reliability. The average number of

 Mean particle swarm optimisation for function optimisation 81

function evaluations of successful runs and the average computational time of the
successful runs, are used to evaluate the cost. For problem Set 1, by fixing the problem
size ten, this information is recorded in Table 3. The quality of the solution obtained is
measured by the minimum, maximum, mean and standard deviation of the objective
function values out of thirty runs. This is shown in Table 4. The corresponding
information for Problem Set 2 is shown in Tables 5 and 6, respectively.
Table 3 Comparative results of SPSO and MeanPSO for Problem Set 1

No. of successful runs
out of 30 runs

Average function
evaluations of successful

runs

Average computational
time in seconds of

successful runs
Problem
no.

SPSO MeanPSO SPSO MeanPSO SPSO MeanPSO
1 0 30 - 973 - 0.1697
2 30 30 3,788 478 0.5822 0.0776
3 30 30 1,515 268 0.2974 0.0469
4 0 30 - 1,889 - 0.3531
5 0 30 - 1,281 - 0.2530
6 5 30 17,126 1,003 1.3094 0.1609
7 27 30 11,020 685 0.9620 0.1359
8 30 30 3,989 519 0.5982 0.0838
9 30 30 3,928 557 0.5924 0.0874
10 26 30 7,907 931 0.8077 0.1327
11 30 30 3,551 397 0.5120 0.0687
12 11 30 26,418 1,058 1.5012 0.1734
13 30 30 10,437 1,217 0.8609 0.1815
14 12 30 3,241 492 0.5496 0.0806
15 30 30 4,378 483 0.6366 0.0776

From Table 3, it is observed that SPSO could not solve three problems at all, whereas
MeanPSO solved all the problems with 100 % success rate. In five problems SPSO could
not give 100% success rate, but MeanPSO solved them with 100% success rate. In the
remaining seven problems both showed 100% success rate. In all the 15 problems,
MeanPSO required lesser number of function calls and lesser computational time as
compared to SPSO. In observing Table 4, it can be seen that MeanPSO gives a better
quality of solutions as compared to SPSO. Thus, for the scalable problems MeanPSO
outperforms SPSO with respect to efficiency, reliability, cost and robustness.

From Table 5, it is observed that SPSO could not solve three problems with 100 %
success, whereas MeanPSO solved all the problems with 100 % success. In five problems
SPSO requires lesser function evaluations, whereas in 10 problems MeanPSO requires
lesser function evaluations. SPSO requires lesser computational time in five problems
whereas MeanPSO requires lesser computational time in 10 problems. Also Table 6
shows that the quality of the solution obtained by MeanPSO is superior to SPSO. Thus
for non scalable problems as well, MeanPSO outperforms SPSO.

 82 K. Deep and J.C. Bansal

Table 4 Comparative objective function value obtained in 30 runs by SPSO and MeanPSO for
Problem Set 1

 Mean particle swarm optimisation for function optimisation 83

Table 5 Comparative results of SPSO and MeanPSO for Problem Set 2

 84 K. Deep and J.C. Bansal

Table 6 Comparative objective function value obtained in 30 runs by SPSO and MeanPSO for
Problem Set 2

 Mean particle swarm optimisation for function optimisation 85

To observe the consolidated effect of percentage of success, average number of function
evaluations and average computational time on SPSO and MeanPSO a performance
index (PI) is used as given in (Deep and Thakur, 2007).

The relative performance of an algorithm using this PI is calculated as:

()1 1 2 2 3 3
1

1 p
i i i

p i

N
PI k k k

N
α α α

=

= + +∑

where

1

i
i

i
Sr
Tr

α = ,

2
, 0

0, 0

i
i

i i

i

Mf if Sr
Af

if Sr

α

⎧
>⎪

= ⎨
⎪ =⎩

 and

3
, 0

0, 0

i
i

i i

i

Mt if Sr
At

if Sr
α

⎧
>⎪= ⎨

⎪ =⎩

1 2 pi , ,...,N=

Sri Number of successful runs of ith problem

Tri Total number of runs of ith problem

Mfi Minimum of average number of function evaluations of successful runs used by all
algorithms in obtaining the solution of ith problem

Afi Average number of function evaluations of successful runs used by an algorithm in
obtaining the solution of ith problem

Mti Minimum of average time used by all the algorithms in obtaining the solution of
ith problem

Ati Average computational time used by an algorithm in obtaining the solution of ith
problem

Npi Total number of problems analysed.

k1, k2 and k3 (k1 + k2 + k3 = 1 and 0 ≤ k1, k2, k3 ≤ 1) are the weights assigned to percentage
of success, average number of function evaluations and execution time of successful runs,
respectively. From above definition it is clear that PI is a function of k1, k2 and k3. Since,
k1 + k2 + k3 = 1, one of ki, i = 1, 2, 3 could be eliminated to reduce the number of dependent
variables from the expression of PI. But it is still difficult to analyse the behaviour of PI,
because the surface plots of PI for SPSO and MeanPSO are overlapping and it is difficult
to visualise them. So, we adopt the same methodology as given in (Deep and Thakur,
2007) i.e., equal weights are assigned to two terms at a time in the PI expression. This
way PI becomes a function of one variable. The resultant cases are as follows

 86 K. Deep and J.C. Bansal

1 2 3
1, , 0 1

2
Wk W k k W−

= = = ≤ ≤ (1)

2 1 3
1, , 0 1

2
Wk W k k W−

= = = ≤ ≤ (2)

3 1 2
1, , 0 1

2
Wk W k k W−

= = = ≤ ≤ (3)

The PI is obtained for SPSO and MeanPSO for all the thirty problems and is shown in
Figure 2. It is clear that the proposed MeanPSO outperforms the SPSO.

Figure 2a Performance index when 1 2 3
1

,
2
W

k W k k
−

= = =

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

weight W

Pe
rf

or
m

an
ce

 In
de

x
(P

I)

SPSO

MeanPSO

Figure 2b Performance index when 2 1 3
1

,
2
W

k W k k
−

= = =

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

weight W

Pe
rf

or
m

an
ce

 In
de

x
(P

I)

SPSO

MeanPSO

 Mean particle swarm optimisation for function optimisation 87

Figure 2c Performance index when 3 1 2
1

,
2
W

k W k k
−

= = =

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

weight W

Pe
rf

or
m

an
ce

 In
de

x
(P

I)

SPSO

MeanPSO

The next task is to investigate the stability of the MeanPSO by observing its effect when
the size of the problems is increased. For this purpose, all 15 scalable problems are
selected and their size is varied from 100 to 500. The average number of function
evaluations when problem size is increased from 100 to 500 is shown in Figure 5 for all
problems of Problem Set 1. The swarm size is 10, 20, 30, 40 and 50 for problem size 100,
200, 300, 400 and 500, respectively.

From Figure 5, it is observed that MeanPSO requires comparatively very less number
of function evaluations even for large scale problems.

Figure 3 Convergence graphs of Problems Set 1

Ackley

0

1

2

3

4

5

0 20 40
It erat ions

Fu
nc

tio
n

Va
lue

Cosine Mixture

-1

-0.5

0

0.5

1

0 100 200 300

It erat ions

Fu
nc

tio
n

Va
lue

Exponential

-1

-0.8

-0.6

-0.4

-0.2

0
1 11 21 31 41 51 61 71 81 91

It erat ions

Fu
nc

tio
n

Va
lue

Griewank

0
20
40
60
80

100

0 50 100
Iterat ions

Fu
nc

tio
n

Va
lue

Rastrigin

0
20
40
60
80

100
120
140

0 500 1000 1500 2000
Iterat ions

Fu
nc

tio
n

va
lue

Function 6

0.00E+00
2.00E+06
4.00E+06
6.00E+06
8.00E+06
1.00E+07
1.20E+07
1.40E+07

0 20 40
Iterat ions

Fu
nc

tio
n

Va
lue

 88 K. Deep and J.C. Bansal

Figure 3 Convergence graphs of Problems Set 1 (continued)

Zakharov

0

50

100

150

0 100 200 300
Iterat ions

Fu
nc

tio
n

va
lue

Sphere

0

5

10
15

20

25

30

0 50 100
Iterat ions

Fu
nc

tio
n

Va
lue

Axis parallel

0

20

40

60

80

100

120

140

0 50 100 150It erat ions

Fu
nc

tio
n

Va
lue

Schw efel 3

0
5

10
15

20
25

30
35

40

0 50 100 150 200 250 300

Iterat ions

Fu
nc

tio
n

Va
lue

Dejong Noise

0

500

1000

1500

2000

0 20 40 60
Iterat ions

Fu
nc

tio
n

Va
lue

Schewfel 4

0

10

20

30

40

50

60

0 200 400 600 800 1000
It ert ions

Fu
nc

tio
n

Va
lue

Cigar

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

0 50 100 150
Iterat ions

Fu
nc

tio
n

Va
lue

Brown 3

0

20

40

60

80

100

120

0 10 20 30
It erat ions

Fu
nc

tio
n

Va
lue

Function 15

0
2
4
6
8

10
12
14
16

0 50 100Iterat ions

Fu
nc

tio
n

Va
lue

Notes: SPSO MeanPSO

Figure 4 Convergence graphs of Problems Set 2

Notes: SPSO MeanPSO

 Mean particle swarm optimisation for function optimisation 89

Figure 4 Convergence graphs of Problems Set 2 (continued)

Notes: SPSO MeanPSO

Figure 5 Required number of function evaluations by MeanPSO when problem size is increased
from 100 to 500 in problem Set 1

0

5000

10000

15000

20000

25000

N
o.

 o
f F

un
ct

io
n

E
va

lu
at

io
ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Problem number

n =100 n = 200 n = 300 n = 400 n = 500

 90 K. Deep and J.C. Bansal

7 Conclusions

In this paper, a new PSO approach for function optimisation is presented. It is based on a
basic change in the velocity update equation. Two terms in the original velocity update
equation of PSO are replaced by the two new terms containing the linear combination of
pbest and gbest. It is tested on 15 scalable problems and 15 nonscalable problems. It is
shown that the new MeanPSO outperforms SPSO in terms of efficiency, accuracy,
reliability and robustness. Particularly for large size problems MeanPSO outperforms
SPSO. As a future work and as suggested by the anonymous reviewer one can also take
the median of corresponding directions of all the particles in the current swarm in place
of mean. In this paper the effect of change of parameters in MeanPSO is not explored. In
a future study parameters fine tuning may be carried out for better performance. Also the
application of MeanPSO to the real world problems would be interesting as a future
research.

Acknowledgements

Authors acknowledge the editor and two anonymous reviewers for their valuable
comments and suggestions. The second author gratefully acknowledges funding from
University Grant Commission (UGC), India under Grant Number 6405-11-61.

References
Angeline, P.J. (1998a) ‘Evolutionary optimization versus particle swarm optimization philosophy

and performance differences’, Lecture Notes in Computer Science, Vol. 1447, pp.601–610,
Springer, Berlin.

Angeline, P.J. (1998b) ‘Using selection to improve particle swarm optimization’, Proceedings of
the IEEE Conference on Evolutionary Computations, pp.84–89.

Banks, A., Vincent, J. and Anyakoha, C. (2007) ‘A review of particle swarm optimization, Part I:
Background and development’, Natural Computing: an International Journal, Vol. 6, No. 4,
pp.467–484.

Banks, A., Vincent, J. and Anyakoha, C. (2008) ‘A review of particle swarm optimization, Part II:
Hybridisation, combinatorial, multicriteria and constrained optimization and indicative
applications’, Natural Computing: an International Journal, Vol. 7, No. 1, pp.109–124.

Baskar, S. and Suganthan, P.M. (2004) ‘A novel concurrent particle swarm optimization’,
Proceedings of the Congress on Evolutionary Computations, pp.792–796.

Clerc, M. and Kennedy, J. (2002) ‘The particle swarm – explosion, stability and convergence in a
multi dimensional complex space’, IEEE Transaction Evolutionary Computation, Vol. 6,
pp.58–73.

Deep, K. and Thakur, M. (2007) ‘A new crossover operator for real coded genetic algorithms’,
Applied Mathematics and Computation, Vol. 188, No. 1, pp.895–911.

Eberhart, R.C. and Shi, Y. (2000) ‘Comparing inertia weights and constriction factors in particle
swarm optimization’, Proc. Congress on Evolutionary Computation, San Diego, CA,
pp.84–88,.

Esquivel, S.C. and Coello Coello, C.A. (2003) ‘On the use of particle swarm optimization with
multi modal functions’, Proceedings of the Congress on Evolutionary Computations,
pp.1130–1136.

 Mean particle swarm optimisation for function optimisation 91

He, S., Wu, Q.H., Wen, J.Y., Saunders, J.R. and Paton, R.C. (2004) ‘A particle swarm optimizer
with passive congregation’, Biosystems, Vol. 78, pp.135–147.

Hendtlass, T. (2003) ‘Preserving diversity in particle swarm optimization’, Lecture Notes in
Computer Science, Vol. 2718, pp.31–40.

Higasbi, N. and Iba, H. (2003) ‘Particle swarm optimization with Gaussian mutation’, Proceedings
of the 2003 IEEE Swarm Intelligence Symposium, pp.72–79.

Hu, X., Shi, Y. and Eberhart, R.C. (2004) ‘Recent advances in particle swarm’, Proceedings of
Congress Evolutionary Computation, Vol. 1, pp.90–97.

Janson, S. and Middendorf, M. (2005) ‘A hierarchical particle swarm optimizer and its adaptive
variant’, IEEE Transaction on System, Man and Cybernetics, Part B, Vol. 38, pp.1272–1282.

Kennedy, J. and Eberhart, R. (1995) ‘Particle swarm optimization’, Proceedings IEEE
International Conference Neural Networks, Vol. 4, pp.1942–1948.

Kennedy, J. and Mendes, R. (2002) ‘Population structure and particle swarm performance’,
Proceedings of the Congress on Evolutionary Computation, pp.1671–1676.

Kennedy, J. and Mendes, R. (2003) ‘Neighborhood topologies in fully – informed and
best-of-neighborhood particle swarms’, Proceedings of the IEEE International Workshop on
Soft Computing in industrial Applications, pp.45–50.

Krink, T. and Lovbjerg, M. (2002) ‘The lifecycle model: combining particle swarm optimization,
genetic algorithms and hill climbing’, Proceedings of Parallel Problem solving from Nature,
Vol. 7, pp.621–630.

Krink, T., Vesterstrem, J.S. and Riget, J. (2002) ‘Particle swarm optimization with spatial particle
extension’, Proceedings of the Congress on Evolutionary Computation, pp.1474–1479.

Liang, J.J., Qin, A.K., Suganthan, P.N. and Baskar, S. (2004) ‘Particle swarm optimization
algorithms with novel learning strategies’, Proceedings of the IEEE Conference on Systems,
Man and Cybernetics, pp.3659–3664.

Liu, H., Li, B., Wang, X., Ji, Y. and Tang, Y. (2004) ‘Survival density particle swarm optimization
for neural network training’, ISNN (1), LNCS 3173, pp.332–337, Springer-Verlag.

Lovbjerg, M. and Krink, T. (2002) ‘Extending particle swarm optimizers with self-organized
criticality’, Proceedings of the Congress on Evolutionary Computation, pp. 1588–1593.

Lovbjerg, M., Rasmussen, T.K. and Krink, T. (2001) ‘Hybrid particle swarm optimizer with
breeding and subpopulation’, Proceedings of the Third Genetic and Evolutionary Computation
Conference, pp.469–476.

Mohais A., Ward, C. and Posthoff, C. (2004) ‘Randomized directed neighborhood with edge
migration in particle swarm optimization’, Proceedings of the IEEE Conference on
Evolutionary Computational, pp.548–555.

Pasupuleti, S. and Battiti, R. (2006) ‘The gregarious particle swarm optimizer (G-PSO)’,
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (Seattle,
Washington, USA). GECCO '06, pp.67–74, ACM, New York, NY.

Peram, T., Veeramachaneni, K. and Mohan, C. K. (2003) ‘Fitness-distance-ratio based particle
swarm optimization’, Proceedings of the IEEE Swarm Intelligence Symposium, pp.174–181.

Poli, R., Laugdon, W.B. and Holland, O. (2005) ‘Extending particle swarm optimization via
genetic programming’, Proceedings of the Eighth European Conference on Genetic
Programming, pp.291–300.

Riget, J. and Vesterstrem, J.S. (2002) ‘A diversity-guided particle swarm optimizer – the ARPSO’,
Technical Report 2002-02, EVALife, Department of Computer Science, University of Aarbus.

Shi, Y. and Eberhart, R.C. (1998a) ‘A modified particle swarm optimizer’, Proceedings of the
IEEE International Conference on Evolutionary Computation, pp.69–73.

Shi, Y. and Eberhart, R.C. (1998b) ‘Parameter selection in particle swarm optimization,’ 7th
Annual Conference on Evolutionary Programming, San Diego, USA.

 92 K. Deep and J.C. Bansal

Silva, A., Neves, A. and Costa, E. (2002) ‘An empirical comparison of particle swarm and predator
– pray optimization’, Lecture Notes in Computer Science, Vol. 2464, pp.103–110, Springer,
Berlin.

Stacey, A., Jancic, M. and Grundy, I. (2003) ‘Particle swarm optimization with mutation’,
Proceedings of the Congress on Evolutionary Computation, pp.1425–1430.

Suganthan, P.N. (1999) ‘Particle swarm optimizer with neighborhood operator’, Proceedings of the
Congress on Evolutionary Computation, pp.1958–1962.

Van den Bergh, F. and Engelbrecht, A.P. (2004) ‘A cooperative approach to particle swarm
optimization’, IEEE Trans. On Evolutionary Computation, Vol. 8, No.3, pp.225–239.

Wei, J., Yuncan, X. and Jixin, Q. (2004) ‘An improved particle swarm optimization algorithm with
disturbance’, IEEE International Conference on Systems, Man and Cybernetics,
pp.5900–5904.

Zhang, W.J. and Xie, X.F. (2003) ‘DEPSO: hybrid particle swarm with differential evolution
operator’, Proceedings of the IEEE International Conference on System, Man and
Cybernetics, pp.3816–3821.

Zhang, W.J., Xie, X.F. and Yang, Z.L. (2002) ‘Hybrid particle swarm optimizer with mass
extinction’, International Conference on Communication, Circuits and Systems,
pp.1170–1173.

