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Abstract
Particle swarm optimization (PSO) has been extensively used in recent years 
for the optimization of nonlinear optimization problems. Two of the most 
popular variants of PSO are PSO-W (PSO with inertia weight) and PSO-C 
(PSO with constriction factor). Efforts have also been made to hybridize 
PSO with other methodologies to improve its performance. In this paper 
we present the hybridization of PSO with quadratic approximation operator 
(QA). The hybridization is performed by splitting the whole swarm into two 
subswarms in such a way that the PSO operators are applied on one subswarm, 
whereas the QA operator is applied on the other subswarm, ensuring that both 
subswarms are updated using the global best particle of the entire swarm. 
Based on this concept, two algorithms, namely qPSO-W and qPSO-C have 
been developed and their performance is evaluated with respect to PSO-W and 
PSO-C on the basis of 15 benchmark test problems and 3 real life problems 
taken from literature. The numerical and graphical results are a proof that 
the hybridized approach is a defi nite improvement in terms of effi ciency, 
reliability and robustness.
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1. Introduction 
Particle swarm optimization (PSO) technique is considered as one of the 
modern heuristic algorithms for optimization introduced by James Kennedy 
and Eberhart in 1995. It is based on the social behavior metaphor [1]. It is 
a population-based optimization technique, which is sometimes regarded 
as an alternative tool to genetic algorithm (GAs) and other evolutionary 
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algorithms (EAs) and gained a lot of attention in the recent years. As 
compared to EAs, PSO is a stochastic search technique with reduced memory 
requirement, computationally effective and easier to implement. Also 
PSO has a more global searching ability at the beginning of the run and has 
greater local search ability near the end of the run [2]. 

The “No free Lunch Theorem” by Wolpert and Macready [3], shows that 
there is no single method which can solve all the problems optimally. As 
a result research on hybrid optimization algorithms has gained momentum 
over the past few years. ‘‘Hybridization” is an approach that combines 
the capabilities of two strong concepts in such a way that the good traits 
of both are adopted. Hybrid strategy is generally regarded as an effi cient 
strategy (requiring fewer evaluations) which is also generally more effective 
(identifying higher quality solutions) for solving complex optimization 
problems. A number of approaches of hybridization of PSO have been 
recently reported in the literature. 

A large number of PSO variants have been developed by combining 
certain aspects from evolutionary computation (EC) and ant colony 
optimization (ACO) with the PSO. In the case of EC hybrids, ideas have 
been borrowed from specifi c EC paradigms, including GA, evolutionary 
programming (EP), evolutionary strategies (ES), differential evolution (DE) 
and cartesian genetic programming (CGP).

Another trend is to merge or combine the PSO with the other techniques, 
especially the EC techniques. Evolutionary operators like selection, 
crossover and mutation have been incorporated into the PSO. By applying 
the selection operation in PSO, the particles with the best performance 
are copied into the next generation; so that the PSO can always keep 
the best performing particles [4]. By incorporating crossover operation, 
information can be swapped between two individuals to have the ability 
to “fly” to the new search area [5]. Among the three evolutionary 
operators, the mutation operators are the most commonly applied 
evolutionary operators in PSO. The purpose of applying mutation to PSO 
is to increase the diversity of the population and to provide the ability 
to the PSO to escape local minima [6–11]. Juang [12] also incorporated 
mutation alongside crossover and elitism. This process imitates the natural 
phenomenon of maturation and outperformed both PSO and GA in the 
study. Another approach is to prevent particles from moving too close to 
each other so that the diversity can be maintained and therefore escape 
from being trapped into local minima is achieved. In [7], the particles are 
relocated when they are too close to each other. Blackwell and Bentley [13] 
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and Krink et al. [9], designed collision-avoiding mechanisms to prevent 
particles from colliding with each other and increase the diversity of 
the swarm. 

Besides incorporating evolutionary operations into PSO, different 
approaches to combine PSO with the evolutionary algorithms have also 
been reported. Robinson et al. [14] obtained better results by applying 
PSO first followed by GA in their profiled corrugated horn antenna 
optimization problem. Jian and Chen [15] introduced a PSO hybrid with 
the GA recombination operator and dynamic linkage discovery to optimize 
diffi cult real number optimization problems. Dynamic linkage discovery is a 
technique based on the notion that if the links between the basic building 
blocks of the objective function can be discovered, then optimization of that 
problem can be improved. In [16], genetical swarm optimization is presented 
by combining PSO and GA. In each iteration the population is divided into 
two parts and these are evolved with the two techniques respectively. They 
are then recombined in the updated population, which is again divided 
randomly into two parts in the next iteration for another run of genetic or 
particle swarm operators. Poli et al. [17–18] proposed a hybrid PSO based 
on genetic programming (GP). GP is used to evolve new laws for the control 
of particles’ movement for specifi c classes of problems. In [19], either PSO 
algorithm, GA or hill-climbing search algorithm is applied to a different 
subpopulation of individuals in which each individual is dynamically assigned 
according to some pre-designed rules. In [20], DE is combined with PSO. 
Particles fl y according to position update equation, but occasionally DE is 
applied to replace one poorly performed particle with a better one while 
retaining its velocity. Zhang and Xie [21], in their DEPSO use DE and 
canonical PSO operators in alternate generations. The hybrid was found 
to be successful for some functions, but not all, with results indicating that 
DEPSO improves on PSO in problems with higher dimensionality. In [22], 
ACO is combined with PSO. A list of best positions found so far is recorded 
and the neighborhood best is randomly selected from the list instead of 
the current neighborhood best. 

Non-evolutionary techniques have also been incorporated into PSO. 
In [23], a cooperative particle swarm optimizer (CPSO) is implemented. 
The CPSO employs cooperative behavior to significantly improve the 
performance of the original PSO algorithm using multiple swarms to 
optimize different components of the solution vector cooperatively. In 
[5], the population of particles is divided into subpopulations which 
breed within their own subpopulation or with a member of another with 
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some probability so that the diversity of the population can be increased. 
Parsopoulos and Vrahatis [24], incorporate deflection and stretching 
techniques as well as a repulsion technique are into the original PSO to 
avoid particles moving toward the already found global minima so that the 
PSO can have more chances to fi nd as many global minima as possible. 
In [25], a “dissipative particle swarm” is designed by adding negative entropy 
into the PSO to discourage premature convergence. Liu and Abraham [26] have 
hybridized a turbulent PSO (TPSO) with a fuzzy logic controller to produce 
a fuzzy adaptive TPSO (FATPSO). The TPSO uses the principle that PSO’s 
premature convergence is caused by particles stagnating about a suboptimal 
location. Arumugam et al. [2] have used extrapolation technique to update 
the particles’ best position along with PSO (ePSO) for solving optimization 
problems. A detailed review on the hybrid PSO can be found in [27].

More and more hybrid algorithms are being designed and implemented 
with the hope of further improving their performance. In this paper we 
propose a novel, effective and effi cient algorithm based on the hybridization 
of PSO and quadratic approximation operator, namely quadratic approxi-
mation particle swarm optimization (qPSO). 

In the proposed hybrid algorithm, quadratic approximation operator is used 
to update a part of the swarm while the remaining of the swarm is updated 
by PSO as usual. In each iteration, a predetermined number of particles of 
the swarm are updated using the minima of quadratic surface passing through 
the global best and two random particles chosen from the entire swarm 
while others use PSO to update their positions. qPSO and standard PSO are 
simulated to test their effi cacy by solving a set of 15 benchmark problems 
and the results are analyzed through various statistical parameters and 
performance index. Three real life applications are then considered to test 
the robustness of the proposed method.

The remaining paper is organized as follows. Section 2 describes standard 
PSO and some of its variations. The proposed qPSO is explained in Section 
3. In Section 4, the testing of the proposed method through a set of 15 
benchmark problems is carried out and the simulation results are compared 
with those obtained via PSO and some of its variants. Three real life 
applications are solved in Section 5 and the experimental results are presented. 
Finally, in Section 6, the conclusion is drawn based on the analysis.

2. Standard PSO and some of its variants 
The idea behind PSO is based on the simulation of the social behavior of 
bird fl ock and fi sh schools. PSO is a swarm intelligence method for global 
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optimization problems. It differs from well-known evolutionary algorithms 
as in evolutionary algorithms a population of potential solutions is used to 
probe the search space, but no operators, inspired by evolution procedures, 
are applied on the population to generate new promising solutions. Instead 
in PSO, each individual, namely particle, of the population, called swarm, 
adjusts its trajectory towards its own previous best position (pbest), and 
towards the previous best position of any member of its topological 
neighborhood (gbest). Two variants of the PSO have been developed, 
one with a global neighborhood and the other with a local neighborhood. 
According to the global variant, each particle moves towards its best previous 
position and towards the best particle in the whole swarm. On the other hand, 
in the local variant, each particle moves towards its best previous position 
and towards the best particle in its restricted neighborhood.

Working of PSO may be briefl y described as under:

Suppose the search space is D-dimensional, then the i-th particle of the 
swarm can be represented by a D-dimensional vector, Xi = (xi1, xi2, …,xiD)T . 
The velocity (position change) of this particle can be represented by another 
D-dimensional vector Vi = (vi1, vi2,…,viD)T . The best previously visited 
position of the i-th particle is denoted as Pi = (pi1, pi2, …,piD)T. Defi ning g 
as the index of the best particle in the swarm, the swarm is manipulated 
according to the following two equations:

Velocity update equation:

 (1) 

Position update equation:

  (2)

where d = 1, 2… D; i = 1, 2… S, where S is the size of the swarm; c1 and 
c2 are constants, called cognitive and social scaling parameters respectively 
(usually, c1= c2; r1, r2 are random numbers, uniformly distributed in 
[0, 1]). Equations (1) and (2) defi ne the initial version of PSO algorithm. 
A constant, Vmax, is used to arbitrarily limit the velocities of the particles 
and improve the resolution of the search. 

The pseudo code of PSO is shown below:

Algorithm PSO:
 For t= 1 to the max. bound of the number on iterations, 
 For i=1 to the swarm size,
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  For d=1 to the problem dimensionality, 
  Apply the velocity update equation: 
  Update Position
  End- for-d; 
  Compute fi tness of updated position;
   If needed, update historical information for Pi and Pg;
  End-for-i;
  Terminate if Pg meets problem requirements;
  End-for-t; 
End algorithm.

The maximum velocity Vmax, serve as a constraint to control the global 
exploration ability of particle swarm. A larger Vmax facilitates global 
exploration, while a smaller Vmax encourages local exploitation. The 
concept of an inertia weight was also developed to better control exploration 
and exploitation. The motivation was to be able to eliminate the need for 
Vmax. The inclusion of an inertia weight in the particle swarm optimization 
algorithm was fi rst reported in the literature in 1998 [28–29].

After some experience with the inertia weight, it was found that although 
the maximum velocity factor, Vmax, couldn’t always be eliminated, the 
particle swarm algorithm works well if Vmax is set to the value of the 
dynamic range of each variable (on each dimension). The resulting velocity 
update equation becomes:

Eberhart and Shi [30] indicates that the optimal strategy is to initially set w 
to 0.9 and reduce it linearly to 0.4, allowing initial exploration followed by 
acceleration toward an improved global optimum.

In 1999, Clerc has introduced a constriction factor, , which improves PSO’s 
ability to constrain and control velocities [31].  is computed as:

( )42

2

−−−
=

φφφ
χ  (3)

where 4,21 >+= φφ cc , and the velocity update equation is then

Eberhart and Shi [30] found that , combined with constraints on Vmax, 
signifi cantly improved the performance of PSO.
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It was observed that PSO usually suffers from premature convergence, 
tending to get stuck in local optima, low solution precision and so on. In 
order to overcome these shortcomings and get better results, numerous 
improvements to PSO have been proposed. In this paper we propose another 
hybrid version of PSO which uses quadratic approximation operator.

3. Proposed quadratic approximation particle swarm optimization 
(qPSO)

3.1 Motivation
Deep and Das [32], hybridize a binary GA by incorporating QA operator 
as an additional operator for local search. This showed a substantial 
improvement in the performance of GA. PSO has the effi ciency to solve a 
wide variety of problems with a larger percentage of success. Mohan and 
Shankar [33] proved that random search technique (RST) which uses QA 
operator provides fast convergence rate but once stuck in a local optima, it 
is generally diffi cult to come out of it. Perhaps social knowledge concept 
of PSO could help RST in coming out of the local optima. As compared 
to GAs, the PSO has much more profound intelligent background and 
could be performed more easily. These two facts motivated us to hybridize 
PSO and QA with the expectation of faster convergence (from QA) and 
improved results (from PSO).

3.2 Quadratic approximation operator 
QA is an operator which determines the point of minima of the quadratic 
hyper surface passing through three points in a D-dimensional space. 
It works as follows:

1.  Select the particle R1, with the best objective function value. Choose two 
random particles R2 and R3 such that out of R1, R2 and R3, at least two 
are distinct.

2. Find the point of minima R* of the quadratic surface passing through 
R1, R2 and R3, where

 (4)

where f(R1), f(R2) and f(R3) are the objective function values at R1, R2 and 
R3 respectively. The calculations are to be done component-wise using 
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(4) to obtain R*. QA operator has been successfully applied to solve 
application problems as well [34].

3.3 The process of hybridization 
In each iteration, the whole swarm S is divided into two subswarms 
(say S1 and S2). From one generation to the next generation, S1 is evolved 
using PSO, whereas S2 is evolved using QA. Figure 1 shows the idea that 
stands behind qPSO and the way to integrate the two techniques. qPSO 
consists in a strong co-operation of QA and PSO, since it maintains the 
integration of the two techniques for the entire run.

Fig. 1. Transition from ith iteration to i+1th iteration

It is possible to understand the key steps of the qPSO, in a better way 
through an intuitive fl owchart shown in Fig. 2. In the fi gure, ITER stands 
for iteration number and R1, R2 and R3 has same meaning as in Section 3.2. 
It should be noted that R1 used in QA and gbest used in PSO both are 
the global best position of the entire swarm (let us call it GBEST) i.e R1 = 
GBEST and gbest = GBEST. The strength of the qPSO lies in the facts that 
both PSO and QA use the GBEST simultaneously or in other words, 
subswarm S1 and S2 share their best positions with each other and 
for transition from one iteration to the next, both updating schemes 
use the entire swarm’s information. However, in updating a particle’s 
position by QA, no information about its current position is applied as 
in PSO but the presence of memory of the corresponding subswarm 
preserves the best performed particles. So in i+1th iteration QA 
will not produce worse solution than that in ith iteration.
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We consider two versions of PSO, namely PSO-W (PSO with time varying 
inertia weight) and PSO-C (PSO with constriction factor) in order to compare 
the performance of qPSO. Thus two versions of qPSO come into existence, 
qPSO-W (qPSO with time varying inertia weight) and qPSO-C (qPSO with 
constriction factor). Percentage of swarm to be updated by PSO or QA is 
an important parameter of qPSO. We call this parameter as coeffi cient of 
hybridization (CH). CH is the percentage of swarm which is evolved using 
QA in each iteration. Thus, if CH = 0, then the algorithm is pure PSO 
(the whole swarm is updated by PSO operators), and if CH = 100 then 
the algorithm is pure QA (the whole swarm is updated by QA operator) 
while for 0<CH<100 the corresponding percentage of swarm is evolved by 
QA and the rest with PSO.

4. Testing with benchmark functions 
From the standard set of benchmark problems available in the 
literature [32], 15 important problems have been selected to test the effi cacy 
of the proposed methods. These problems are of continuous variables and 
have different degree of complexity and multimodality. The set of test 
functions includes unimodal and multimodal functions which are scalable 
(the problem size can be varied as per the user’s choice). The problem 
size for all problems is taken to be 30. All the problems are of minimization 
type having minimum at 0.

4.1 Selection of parameters 
In case of many algorithms values of some parameters have to be provided 
by the user. PSO also has some parameters. In literature, different values 
of these parameters are used. In this paper we use the parameter setting as 
suggested in [35–37]. We set swarm size S =50. The inertia weight w is set 
to reduce linearly from 0.8 to 0.4. Constriction coeffi cient  is calculated 
from equation (3). For PSO-C the cognitive and social parameters c1 and 
c2 are 2.8 and 1.3, respectively; for PSO-W both are set to 2. All PSOs are 
global versions i.e. each particle fl ies through the search space. Maximum 
velocity Vmax set equal to 0.5*(Xmax-Xmin), where Xmax and Xmin are the 
upper and lower bounds of the decision variables. Two criteria are applied 
to terminate the simulation of the algorithms: reaching maximum number 
of iterations (which was set as 1000) and the second criterion was getting 
a minimum error (0.001 for this study). For fair comparison we used the 
parameters of qPSO-W and qPSO-C algorithms as in original PSO-W and 
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PSO-C (i.e. parameters for PSO-C and qPSO-C are same and for PSO-W 
and qPSO-W are same). One of the questions concerning the proposed 
method is what percentage of the swarm (i.e. coeffi cient of hybridization) 
should be updated using QA? After a few preliminary tests, the value of 
CH = 30% is adopted for our study which yielded the best results for 
considered test functions.

Fig. 2. Flowchart of qPSO process
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4.2 Comparisons and discussions 
This section focuses on the efficiency of qPSO as tested against 15 
benchmark functions with 30 variables, which are taken from [32]. To 
avoid attributing the optimization results to the choice of a particular initial 
population and to conduct fair comparisons, we perform each test 100 times, 
starting from various randomly selected points in the hyper-rectangular 
search domain given in the literature and the results are recorded. The four 
PSOs (PSO-W, PSO-C, qPSO-W and qPSO-C) are implemented in C++. 
From the recorded simulated results statistical analyses are carried out 
and presented in Table 1. For each method the mean error, minimum error 
(Min Error), standard deviation (SD), success rate (SR) and the average 
number of function evaluations required to fulfill the termination 
condition (Mean Eval) are calculated from 100 simulated runs and are 
compared. A success was counted when the condition fmin– fopt ≤ 0.001 was 
met, where fmin is the best solution found when an algorithm terminates 
and fopt is the known global minimum of the problem.

The fi rst goal of the analysis is to observe if the hybridization shows an 
improvement over the original PSOs for proposed two versions or not. 
From Table 1, it is clear that from the point of view of success rate qPSO-W 
is better than PSO-W in 9 problems, and worse in 1 problem while both 
perform same in 4 problems. Also on the same criteria qPSO-W is better 
than qPSO-C in 1 problem and worse in 6 problems while qPSO-W and 
qPSO-C both perform same in 7 problems. On the criteria of success 
rate qPSO-C is better than PSO-C in 5 problems while in remaining 9 
problems both the methods have same performance. Clearly, qPSOs are 
better than their respective original versions and qPSO-C has the highest 
success rate than any method considered. Thus on the criteria of success rate 
qPSO-C stands fi rst. If we consider mean number of function evaluations 
then qPSO-W is better than PSO-W in 9 problems, worse in 2 problems 
and has same performance as PSO-W in 3 problems. qPSO-C is better than 
PSO-C in 9 problems, worse in 2 problems and same in 3 problems. 
Also, if we compare hybridized PSOs then qPSO-C takes less number of 
functions evaluations to converge than qPSO-W in 10 problems, higher 
in 1 problem while same in 3 problems. From above discussion we can 
conclude that hybridization shows an improvement over the original 
PSOs for both versions.

In order to compare the consolidated performance of PSO-W, PSO-C, 
qPSO-W and the qPSO-C algorithm, the value of a performance index 
PI [38] is computed for these four algorithms. This index gives a 
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weighted importance to the success rate, the mean objective function 
value as well as the average number of function evaluations. The value 
of this performance index for a computational algorithm under 
comparison is given by

( )∑
=

++=
pN

i

iii

p

kkk
N

PI
1

332211
1 ααα

Where ;           and      .

i = 1,2,..., Np 

Sri = Number of successful runs of ith problem

Tri = Total number of runs of ith problem

= Minimum of average number of function evaluations of successful 
runs used by all algorithms in obtaining the solution of ith problem

= Average number of function evaluations of successful runs used by 
an algorithm in obtaining the solution of ith problem

Moi= Minimum of mean objective function value obtained by all the 
algorithms for the ith problem

Aoi= Mean objective function value obtained by an algorithm for the 
ith problem

Np= Total number of problems analyzed.

k1, k2 and k3 (k1 + k2 + k3 and k1, k2, k3 ≤ 1) are the weights assigned to 
success rate, average number of function evaluations of successful runs and 
mean objective function value, respectively. From above defi nition it is clear 
that PI is a function of k1, k2 and k3. Since k1 + k2 + k3 = 1 one of ki, i = 1,2,3  
could be eliminated to reduce the number of dependent variables from the 
expression of PI. But it is still diffi cult to analyze the behavior of PI, because 
the surface plots of PI for PSOs and qPSOs are overlapping and it is diffi cult to 
visualize them. So, we adopt the same methodology as given in [38] i.e. equal 
weights are assigned to two terms at a time in the PI expression. This way PI 
becomes a function of one variable. The resultant cases are as follows:

(i) 
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As an overall conclusion from PI we can say that the qPSOs are better than 
their respective pure versions. 

Further, we would like to view the comparative decrease in the objective 
function value by PSOs and the qPSOs. For this a typical run of each of 
the method for each problem is shown in Fig. 4. The X-axis represents the 
iteration number and the Y-axis represents the error. It is observed that the 
qPSOs converges very rapidly to the minima as compared to PSOs in most 
of the problems.

Fig. 3. Performance index; (a) for case (i), (b) for case (ii) and (c) for case (iii)
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(ii) 

(iii) 

The graphs corresponding to each of the cases (i), (ii) and (iii) are shown in 
Figures 3(a)–3(c) respectively. In these fi gures the horizontal axis represents 
the weight W and the vertical axis represents the performance index PI. 

In case (i), average number of function evaluations of successful runs and 
the average objective function value are given equal weights. PI’s of all 
four algorithms are superimposed in the Fig. 3(a) for comparison and to 
get a ranking of the performance of the four algorithms. It is observed that 
for qPSO-C the value of PI is more than all the remaining three PSOs. The 
remaining PSOs perform in the order PSO-C > qPSO-W > PSO-W.

In case (ii), equal weights are assigned to the percentage of success and 
average number of function evaluations of successful runs. From Fig. 3(b), 
it is clear that all PSOs perform same as in case (i).

In case (iii), equal weights are assigned to the percentage of success 
and average objective function value. Again the same conclusion is drawn 
from Fig. 3(c).
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5. Solution of some real life problems 
In order to check the robustness of proposed methods, three real life problems 
namely Girder design [39], pressure vessel [40] and water distribution [41] 
have been solved using original PSOs and their hybrid versions developed 
by us. The actual optimum values of these real life problems are not known. 
Therefore the experiments were carried out by running all the PSO versions 
for 50000 functions evaluations. The average objective function value, the 
best objective function value and standard deviation were obtained and 
given in Table 4. Constraints of these problems were handled using penalty 
function approach [41].

In the case of girder design problem, as such all PSO algorithms obtained 
the same minimum objective function value. However, mean objective 
function value obtained in case of qPSO-C was better than all other versions 
of PSO. Mean objective function value obtained by qPSO-W was better than 
value obtained by its pure version i.e. PSO-W. In pressure vessel problem 
again the minimum value obtained was same by all PSO versions but the mean 
objective function value obtained by qPSO-C was the best. On the criteria 
of mean objective function value the qPSO-W is better than PSO-W, in the 
case of water distribution problem the best mean objective function value 
is obtained by qPSO-C. However, in this problem qPSO-W shows inferior 
performance as compared to PSO-W. 

6. Conclusion
In this paper a novel PSO algorithm based on the hybridization of PSO 
with quadratic approximation operator, namely, qPSO is introduced. Two 
of the most popular variants of PSO algorithm namely PSO with linearly 
decreasing inertia weight (PSO-W) and PSO with constriction factor 
(PSO-C) are considered for hybridization. The two resultant hybridized 
variants proposed are qPSO-W and qPSO-C. The hybridization is 
performed by splitting the swarm into two subswarms in such a way that 
one subswarm is evolved using PSO, whereas another is evolved using 
QA. The performance of these variants is evaluated on the basis of 15 
benchmark problems taken from literature. Based on the numerical results 
it is clear that the proposed hybrid PSO variants outperform the original 
PSO variants in terms of effi ciency, reliability and robustness. The various 
performance criteria are consolidated into a performance index which 
clearly indicates the effi cacy of the proposed algorithms.
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Fig. 4. Convergence graphs of benchmark problems
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Table 4: Results of real life problems

Problem Algorithm Average bjective 
function value

Best objective 
function value

Standard 
deviation

Girder design PSO-W 0.905716 0.896857 0.006524
PSO-C 0.900075 0.896858 0.004062
qPSO-W 0.902558 0.896856 0.006554
qPSO-C 0.898947 0.896856 0.002578

Pressure vessel PSO-W 7049.35 7019.03 254.166
PSO-C 7023.44 7019.03 33.0765
qPSO-W 7022.33 7019.03 16.9434
qPSO-C 7021.42 7019.03 11.6045

Water PSO-W 2087746.114 2087600.322 170.4204655
distribution PSO-C 2087794.271 2087600.436 259.2144961

qPSO-W 2087866.586 2087600.818 338.4060376
qPSO-C 2087671.680 2087600.374 105.4344862

In order to demonstrate the versatility of the proposed algorithms, PSOs 
and qPSOs are also used to solve three real life application problems 
arising in the fi eld of engineering. Based on the numerical results it is 
concluded that the proposed algorithms are very promising in determining 
the global optimal solution of nonlinear optimization problems.
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