
Applied Mathematics and Computation 218 (2012) 11042–11061
Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc
A Modified Binary Particle Swarm Optimization for Knapsack Problems

Jagdish Chand Bansal a,⇑, Kusum Deep b

a ABV-Indian Institute of Information Technology and Management Gwalior, Gwalior 474010, India
b Department of Mathematics Indian Institute of Technology Roorkee, Roorkee 247667, India
a r t i c l e i n f o

Keywords:
Binary Particle Swarm Optimization
Knapsack Problems
Sigmoid function
0096-3003/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.amc.2012.05.001

⇑ Corresponding author.
E-mail addresses: jcbansal@gmail.com, jcbansal@
a b s t r a c t

The Knapsack Problems (KPs) are classical NP-hard problems in Operations Research
having a number of engineering applications. Several traditional as well as population
based search algorithms are available in literature for the solution of these problems. In
this paper, a new Modified Binary Particle Swarm Optimization (MBPSO) algorithm is
proposed for solving KPs, particularly 0–1 Knapsack Problem (KP) and Multidimensional
Knapsack Problem (MKP). Compared to the basic Binary Particle Swarm Optimization
(BPSO), this improved algorithm introduces a new probability function which maintains
the diversity in the swarm and makes it more explorative, effective and efficient in solving
KPs. MBPSO is tested through computational experiments over benchmark problems and
the results are compared with those of BPSO and a relatively recent modified version of
BPSO namely Genotype–Phenotype Modified Binary Particle Swarm Optimization
(GPMBPSO). To validate our idea and demonstrate the efficiency of the proposed algorithm
for KPs, experiments are carried out with various data instances of KP and MKP and the
results are compared with those of BPSO and GPMBPSO.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Knapsack Problems (KPs) have been extensively studied since the pioneering work of Dantzig [1]. KPs have lot of imme-
diate applications in industry, financial management. KPs frequently occur by relaxation of various integer programming
problems.

The family of Knapsack Problems requires a subset of some given items to be chosen such that the corresponding profit
sum is maximized without exceeding the capacity of the Knapsack(s). Different types of Knapsack Problems occur, depend-
ing upon the distribution of the items and knapsacks:

(a) 0–1 Knapsack Problem: each item may be chosen at most once.
(b) Bounded Knapsack Problem: if each item can be chosen multiple times.
(c) Multiple Choice Knapsack Problem: if the items are subdivided into some finite number of classes and exactly one

item must be taken from each class.
(d) Multiple or Multidimensional Knapsack Problem: if we have n items and m knapsacks with capacities not necessarily

same and knapsack are to be filled simultaneously.
. All rights reserved.

iiitm.ac.in (J.C. Bansal), kusumfma@iitr.ernet.in (K. Deep).

http://dx.doi.org/10.1016/j.amc.2012.05.001
mailto:jcbansal@gmail.com
mailto:jcbansal@iiitm.ac.in
mailto:kusumfma@iitr.ernet.in
http://dx.doi.org/10.1016/j.amc.2012.05.001
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061 11043
All the Knapsack Problems belongs to the family of NP-hard1 problems. Despite of being NP-hard problems, many large
instances of KPs can be solved in seconds. This is due to several years of research which have proposed many solution
methodologies including exact as well as heuristic algorithms. 0–1 Knapsack and Multidimensional Knapsack Problems are
solved using MBPSO in this paper. Therefore, only 0–1 Knapsack Problem (KP) and Multidimensional Knapsack Problem
(MKP) are described here in detail.

1.1. 0–1 Knapsack Problem

0–1 Knapsack Problem (KP) is a typical NP-hard problem in operations research. The classical 0–1 Knapsack problem is
defined as follows:

We are given a set of n items, each item i having an integer profit pi and an integer weight wi. The problem is to choose a
subset of the items such that their total profit is maximized, while the total weight does not exceed a given capacity C. The
problem may be formulated so as to maximize the total profit f(x) as follows:
1 A m
only wa
Maximize f ðxÞ ¼
Xn

i¼1

pixi;

Subject to Xn

i¼1

wixi 6 C;

xi 2 f0;1g; i ¼ 1;2; . . . ;n;

9>>>>>>>>>=
>>>>>>>>>;

ð1Þ
where the binary decision variables xi are used to indicate whether item i is included in the knapsack or not. Without loss of
generality it may be assumed that all profits and weights are positive, that all weights are smaller than the capacity C so each
item fits into the knapsack, and that the total weight of the items exceeds C to ensure a nontrivial problem.

KP has high theoretical and practical value; and there are very important applications in financial and industrial areas,
such as investment decision, budget control, project choice, resources assignment, goods loading and so on. Many exact
as well as heuristic techniques are available to solve the 0–1 Knapsack problems. Heuristic algorithms include simulated
annealing [2], genetic algorithm [3–5], ant colony optimization [6,7], differential evolution [8], immune algorithm [9] and
particle swarm optimization [10–14].

1.2. Multidimensional Knapsack Problem

The NP-hard 0–1 Multidimensional Knapsack Problem is a generalization of the 0–1 simple knapsack problem. It consists
of selecting a subset of given objects (or items) in such a way that the total profit of the selected objects is maximized while a
set of knapsack constraints are satisfied. More formally, the problem can be stated as follows:
Maximize f ðxÞ ¼
Xn

i¼1

pixi;

Subject to Xn

i¼1

wi;jxi 6 Cj 8j ¼ 1;2; . . . ;m;

wi;j P 0; Cj P 0;
xi 2 f0;1g; i ¼ 1;2; . . . ; n;

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2Þ
where n is the number of objects, m is the number of knapsack constraints with capacities Cj, pi represents the benefit of the
object i in the knapsack, xi is a binary variable that indicates xi = 1, if the object i has been stored in the knapsack and xi = 0, if
it remains out, and wi,j represents the entries of the knapsack’s constraints matrix.

A comprehensive overview of practical and theoretical results for the MKP can be found in [15]. Many practical engineer-
ing design problems can be formulated as the MKP, for example, the capital budgeting problem, allocating processors,
databases in a distributed computer system, cargo loading and development of pollution prevention and control strategies.
MKP has been solved by many exact as well as heuristic methods.

Heuristic methods include Tabu Search [16–22], Genetic Algorithm (GA) [23–25,4,26–28], Ant Colony Optimization (ACO)
[29,20,30,31], Differential Evolution (DE) [32], Simulated Annealing (SA) [33], Immune Inspired Algorithm [34], and Particle
Swarm Optimization (PSO) [35–37], fast and effective heuristics [38], permutation based evolutionary algorithm [39].

In this paper, a new Modified Binary Particle Swarm Optimization method (MBPSO) is proposed. The method is based on
replacing the sigmoid function by a linear probability function. Further, the efficiency of MBPSO is established by applying it
to KP and MKP.
athematical problem for which, even in theory, no shortcut or smart algorithm is possible that would lead to a simple or rapid solution. Instead, the
y to find an optimal solution is a computationally-intensive, exhaustive analysis in which all possible outcomes are tested.

11044 J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061
Rest of the paper is organized as follows: In Section 2, BPSO is described. The details of proposed MBPSO are given in Sec-
tion 3. The Section 4 presents experimental results of MBPSO and its comparison with original BPSO as well as Genotype–
Phenotype MBPSO on test problems. In Section 5, numerical results of 0–1 Knapsack and Multidimensional Knapsack Prob-
lems, solved by BPSO and MBPSO are compared. Finally the conclusions, based on the results, are drawn in Section 6.

2. Binary Particle Swarm Optimization

The particle swarm optimization algorithm, originally introduced in terms of social and cognitive behaviour by Kennedy
and Eberhart [40,41], solves problems in many fields, especially engineering and computer science. Only within a few years
of its introduction PSO has gained wide popularity as a powerful global optimization tool and is competing with well-
established population based search algorithms. The inspiration behind the development of PSO is the mechanism by which
the birds in a flock and the fishes in a school cooperate while searching for food. In PSO, a group of active, dynamic and inter-
active members called swarm produces a very intelligent search behaviour using collaborative trial and error. Each member
of the swarm called particle, represents a potential solution of the problem under consideration. Each particle in the swarm
relies on its own experience as well as the experience of its best neighbour (in terms of fitness). Each particle has an asso-
ciated fitness value. These particles move through search space with a specified velocity in search of optimal solution. Each
particle maintains a memory which helps it in keeping the track of the best position it has achieved so far. This is called the
particle’s personal best position (pbest) and the best position the swarm has achieved so far is called global best position
(gbest). The movement of the particles is influenced by two factors using information from iteration-to-iteration as well
as particle-to-particle. As a result of iteration-to-iteration information, the particle stores in its memory the best solution
visited so far, called pbest, and experiences an attraction towards this solution as it traverses through the solution search
space. As a result of the particle-to-particle information, the particle stores in its memory the best solution visited by any
particle, and experiences an attraction towards this solution, called gbest, as well. The first and second factors are called cog-
nitive and social components, respectively. After each iteration, the pbest and gbest are updated for each particle if a better or
more dominating solution (in terms of fitness) is found. This process continues, iteratively, until either the desired result is
converged upon, or it is determined that an acceptable solution cannot be found within computational limits. Initially PSO
was designed for continuous optimization problems, but later a wide variety of challenging engineering and scientific appli-
cations came into being. A survey of these recent advances can be found in [42–44]. In [45] the binary version of PSO (BPSO)
was introduced. It is outlined as follows:

Suppose the search space is S = {0,1}D, and the objective function f is to be maximized, i.e., max f(x), then the ith particle of
the swarm can be represented by a D – dimensional vector, Xi = (xi1,xi2, . . . ,xiD)T, xid 2 {0,1},d = 1,2, . . . ,D. The velocity
(position change) of this particle can be represented by another D-dimensional vector Vi = (vi1,vi2, . . . ,viD)T, vid 2 [�Vmax,Vmax],
-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vid

si
gm

(v
id

)

Fig. 1. Sigmoid function with k = 1.

J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061 11045
d = 1,2, . . . ,D and Vmax is the maximum velocity. Previously visited best position of the ith particle is denoted as Pi =
(pi1,pi2, . . . ,piD)T, pid 2 {0,1}, d = 1,2, . . . ,D. Define g as the index of best performer in the swarm and pgd as the swarm best,
then the swarm is manipulated according to the following two equations:

Velocity Update Equation:
v id ¼ v id þ c1r1ðpid � xidÞ þ c2r2ðpgd � xidÞ: ð3Þ
Position Update Equation:
xid ¼
1 if Uð0;1Þ < sigmðv idÞ;
0 otherwise;

�
ð4Þ
where d = 1,2 . . .D; i = 1,2 . . .N, andN is the size of the swarm; c1 and c2 are constants, called cognitive and social scaling
parameters respectively; r1, r2 are random numbers, uniformly distributed in [0,1]. U(a,b) is a symbol for uniformly distrib-
uted random number between 0 and 1. Sigm(vid) is a sigmoid limiting transformation having an ‘‘S’’ shape as shown in Fig. 1
and defined as sigmðv idÞ ¼ 1

1þexpð�kv idÞ
; where k controls the steepness of the sigmoid function. If steepness k = 1 then Eqs. (3)

and (4) constitute the BPSO algorithm [45].
The pseudo code of BPSO for maximization of f(X) is shown below:

Create and initialize a D-dimensional swarm, N
Loop

For i = 1 to N
if f(Xi) > f(Pi) then do

For d = 1 to D
pid = xid

Next d
End do
g = i
For j = 1 to N

if f(Pj) > f(Pg) then g = j
Next j
For d = 1 to D

Apply Eq. (3)
vid 2 [� Vmax,Vmax]

Apply Eq. (4)
Next d

Next i
Until stopping criterion is true

Return (Pg, f(Pg))

A drawback observed with BPSO is the non-monotonic shape of the changing probability function (sigmoid function) of a
bit (from 0 to 1 or vice versa). The sigmoid function has a concave shape that for some bigger vid values the changing prob-
ability will decrease (i.e., for bigger values of velocities BPSO produces low exploration). Thus for more diversified search in
BPSO some improvements are possible. This motivates authors to introduce a new probability function in BPSO with
property of large exploration capability even in the case of large velocity values. This paper proposes a new Modified Binary
Particle Swarm Optimization method (MBPSO) and its application to 0–1 KP and MKP.

3. The proposed Modified Binary Particle Swarm Optimization (MBPSO)

3.1. Motivation

In BPSO velocities vid are restricted to be in the range [0,1] to be interpreted as a probability for selection of 1. Sigmoid
function is applied to normalize the velocity of a particle such that vid2 [0,1]. For BPSO, the velocities will increase in their
absolute value, until the Vmax bounds are reached, at which point BPSO has little exploration. It can happen very quickly that
velocities approach Vmax and when it happens, there is a very small probability of 0.018 (for Vmax = 4) that a bit will change.
Now we consider the cases when the steepness k of the sigmoid function in BPSO, is varied.

3.1.1. Case I: When steepness k is close to 0:
Then the sigmoid function tends to a straight line parallel to the horizontal axis as k tends to zero (Refer Fig. 2). This pro-

vides a probability close to 0.5 and BPSO starts to behave like a random search algorithm. For example, for k = 0.1, probability
lies between 0.4 and 0.6 approximately and for k = 0.2, probability lies between 0.3 and 0.7 approximately. In this way, the

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vid

si
gm

(v
id

)

When steepness = 0.1
When steepness = 0.2

Fig. 2. Sigmoid function when steepness k is close to 0.

11046 J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061
algorithm will converge very slowly and will be very prone to provide local optima only. Thus, we can conclude that for
steepness close to zero the method will converge slowly.

3.1.2. Case II: when steepness k is increased:
The curve no longer remains a straight line, but instead starts taking the shape of English alphabet S. This leads to the

drawback of sigmoid function, i.e., provides low diversity and low exploration. Refer Fig. 3, wherein the sigmoid curves with
steepness 0.7, 1, and 2 are drawn. Since steepness is problem dependent, hence an extensive study needs to be carried out in
order to fine tune the steepness for a problem under consideration. In other words, the normalization of velocity is problem
dependent and therefore, instead of using sigmoid function for this purpose one can use other approaches for better explo-
ration as suggested in [46]. In this paper, a linear normalization function is proposed to replace the sigmoid function of BPSO
to make the search process more explorative and efficient.

3.2. Modified Binary Particle Swarm Optimization

In BPSO, there is no role of particle’s previous position after updating velocity while in MBPSO, position update equation is
an explicit function of previous velocity and previous position. Swarm is manipulated according to the following equations:

Velocity Update Equation:
v id ¼ v id þ c1r1ðpid � xidÞ þ c2r2ðpgd � xidÞ: ð5Þ
Position Update Equation:
The basic idea of proposed position update equation for MBPSO is taken from position update equation of PSO for con-

tinuous optimization. The position update equation of continuous PSO is:
xid ¼ xid þ v id:
If velocity bounds are �Vmax and Vmax, then since xid can take values 0 or 1, the term xid + vid is bounded between
(0 � Vmax = �Vmax) and (1 + Vmax). Now the proposed position update equation for MBPSO is
xid ¼
1 if Uð�Vmax;1þ VmaxÞ < ðxid þ v idÞ
0 otherwise

�
ð6Þ
Since Uð0;1Þ ¼ Uð�Vmax ;1þVmaxÞþVmax
ð1þ2VmaxÞ , so we can rewrite (6) as

J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061 11047
xid ¼
1 if Uð0;1Þ < xidþv idþVmax

ð1þ2VmaxÞ ;

0 otherwise:

(

Let pðxid;v idÞ ¼ xidþv idþVmax
ð1þ2VmaxÞ , then the position update equation for MBPSO becomes
xid ¼
1 if Uð0;1Þ < pðxid;v idÞ;
0 otherwise:

�
ð7Þ
Symbols have their usual meaning as in Section 2. In MBPSO, the term p(xid,vid) gives a probability of selection of 1. This is
similar to the BPSO where the term 1

1þexpð�kv idÞ
gives this probability but the difference is that MBPSO allows for better explo-

ration. To illustrate this point, one has to look at these two probability functions, which are illustrated in Fig. 4. In this Figure
the straight line with small dots represents the case when xid at previous time step was 1 and the straight line with dashes,
when xid = 0.

From Fig. 4, it is clear that MBPSO provides better exploration. For example, if vid = 2, then according to BPSO (when steep-
ness k = 1) there is a 0.8808 probability that xid will be bit 1, and a 0.1192 probability for it to be bit 0. Now according to
MBPSO, if Vmax = 4 and assuming that xid = 1, the probability of producing bit 1 is 0.7778 and for bit 0 it is 0.2222. Now
if xid = 0 then the probability of producing bit 1 is 0.6667 and for bit 0 is 0.3333. These smaller probabilities for MBPSO allow
more exploration.

The pseudo code of MBPSO for maximization of f(X) is shown below:

Create and initialize a D-dimensional swarm, N
Loop

For i = 1 to N
if f(Xi) > f(Pi) then do

For d = 1 to D
pid = xid

Next d
End do
g = i
For j = N

if f(Pj) > f(Pg) then g = j
Next j
For d = 1 to D

Apply Eq. (5)
vid 2 [� Vmax,Vmax]
Apply Eq. (7)

Next d
Next i

Until stopping criterion is true
Return (Pg, f(Pg))

The next section presents experimental results of MBPSO and its comparison with original BPSO as well as Genotype–
Phenotype MBPSO.

4. Results and discussions

From (7), it is evident that the proposed MBPSO is highly dependent on the Vmax, the constant maximum velocity. There-
fore, in the next subsection fine tuning (the process of obtaining Vmax which provides the best results) of Vmax is carried
out.

4.1. Fine Tuning of Vmax

In the proposed MBPSO, The position update equation shows that in the search process, behavior of the particles is highly
dependent on Vmax (i.e., the proposed MBPSO is sensitive with the choice of parameter Vmax). Therefore, experiments are
carried out to find the most suitable value of Vmax. This fine tuning is performed for the first five test problems (i.e., problem
1 to 5) given in Table 1.

Since MBPSO is a binary optimization algorithm and test problems of Table 1 are continuous optimization problems
therefore, it is necessary to have a routine to convert binary representation into real values. In this paper, first a swarm
of N particles is created. Each particle is a vector of D bit strings, each of length L. A simple routine which converts each
bit string into an integer is used:

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vid

si
gm

(v
id

)

When Steepness = 0.7
When Steepness = 1
When Steepness = 2

Fig. 3. Sigmoid function when steepness k is increased.

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vid

si
gm

(v
id

) a
nd

 p
(x

id
, v

id
)

Sigm(vid) with steepenss = 1

p(0,vid)

p(1,vid)

Fig. 4. Comparison between sigmoid function and proposed function p(xid,vid).

11048 J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061
X Integer ¼ Convert From Binary To IntegerðBinary Representation of XÞ:
Here, X represents any coordinate of a particle.
The routine, Convert_From_Binary_To_Integer works using following formula:

Xinteger ¼
PL
i¼0
ðXi � 2iÞ; Here, it is assumed that ith bit in the binary representation of X is Xi.

Table 1
Test problems.

Problem no. Function name Expression Search space Objective function value

1. Sphere Min f ðxÞ ¼
Pn

i¼1x2
i

�5.12 6 xi 6 5.12 0

2. Griewank Min f ðxÞ ¼ 1þ 1
4000

Pn
i¼1x2

i �
Qn

i¼1 cos xiffi
i
p
� �

�600 6 xi 6 600 0

3. Rosenbrock Min f ðxÞ ¼
Pn�1

i¼1 100 xiþ1 � x2
i

� �2 þ x�i 1
� �2

� �
�30 6 xi 6 30 0

4. Rastrigin Min f ðxÞ ¼ 10nþ
Pn

i¼1 x2
i � 10 cosð2pxiÞ

� 	 �5.12 6 xi 6 5.12 0

5. Ellipsoidal Min f ðxÞ ¼
Pn

i¼1ðxi � iÞ2: �n 6 xi 6 n 0

6. Cosine Mixture Min f ðxÞ ¼ �0:1
Pn

i¼1cosð5pxiÞ þ
Pn

i¼1x2
i þ 0:1n �1 6 xi 6 1 0

7. Exponential Min f ðxÞ ¼ � exp �0:5
Pn

i¼1x2
i

� �
þ 1 �1 6 xi 6 1 0

8. Zakharov’s Min f ðxÞ ¼
Pn

i¼1x2
i þ

Pn
i¼1

i
2

� �
xi

� 	2 þ Pn
i¼1

i
2

� �
xi

� 	4 �5.12 6 xi 6 5.12 0

9. Cigar Min f ðxÞ ¼ x2
i þ 100000

Pn
i¼2x2

i
�10 6 xi 6 10 0

10. Brown 3
Min f ðxÞ ¼

Pn�1
i¼1 x2

i

� � x2
iþ1þ1ð Þ þ x2

iþ1

� � x2
i þ1ð Þ
 � �1 6 xi 6 4 0

J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061 11049
Now the integer so obtained is converted and bounded in the continuous interval [a,b] as follows:
Table 2
Fine Tu

Func

2(a):
Sphe
Grie
Rose
Rast
Ellip
Mea

2(b):
Sphe
Grie
Rose
Rast
Ellip
Mea

2(c):
Sphe
Grie
Rose
Rast
Ellip
Mea
XReal ¼ aþ XInteger �
ðb� aÞ

2L ;
The bit string length L is set to be 10, in this paper.
The most common values of c1 and c2(c1 = 2 = c2) are chosen for experiments. Swarm Size is set to be 5 times the number

of decision variables. The algorithm terminates if either maximum number of function evaluations which is set to be
3000 � Number of decision variables, is reached or optimal solution is found. For different values of Vmax (Vmax is varied
from 1 to 11 with step size 1.), Success Rate (SR), Average Number of Function Evaluations (AFE), and Average Error (AE) are
recorded. SR, AFE, and AE for test problems 1–5 and for different values of Vmax are tabulated in Table 2(a–c) respectively. If
any entry in Table 2 is less than 10�8, it is rounded to 0. It is clear that mean of SR, AFE, and AE over the chosen set of test
problems is best for Vmax 2[2,5]. Therefore, based on these experiments, the most suitable value of Vmax, for this study is
set to 4.

4.2. Comparative Study

In order to verify the feasibility and effectiveness of the proposed MBPSO method for optimization problems, MBPSO
is tested on 10 well known benchmark problems, listed in Table 1. The parameter setting is same as suggested in fine
tuning of Vmax. Results obtained by MBPSO are also compared with those of original BPSO and Genotype–Phenotype
ning of Vmax.

tion Vmax

1 2 3 4 5 6 7 8 9 10 11

Fine Tuning of Vmax based on Success Rate (SR)
re 100 100 100 100 100 100 100 100 100 100 100

wank 100 100 100 97 100 100 100 100 100 100 100
nbrock 10 17 3 10 17 23 27 13 10 0 3
rigin 100 100 100 100 100 100 100 100 100 100 100
soidal 43 40 70 70 43 20 10 17 0 0 0
n 70.67 71.33 74.67 75.33 72 68.67 67.33 66 62 60 60.67

Fine Tuning of Vmax based on Average Number of Function Evaluations (AFE)
re 19327 20673 16567 17480 22633 24533 26313 28433 29940 31967 33260

wank 25587 27667 27107 24813 30207 30760 32967 36313 37120 39567 42433
nbrock 48113 48600 48000 49680 49133 48680 48240 49553 49887 50000 49960
rigin 24520 26013 24640 24187 27120 28467 30093 32280 33653 35207 36933
soidal 46927 47200 42027 43327 47227 49293 49700 49453 50000 50000 50000
n 32895 34031 31668 31897 35264 36347 37463 39207 40120 41348 42517

Fine Tuning of Vmax based on Average Error (AE)
re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

wank 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nbrock 130.87 114.90 64.47 54.43 56.70 92.73 95.30 92.10 89.23 87.87 133.90
rigin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
soidal 0.30 0.33 0.83 0.97 1.17 0.60 0.73 0.60 1.40 1.67 1.87
n 26.23 23.05 13.06 11.08 11.57 18.67 19.21 18.54 18.13 17.91 27.15

11050 J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061
Modified Binary Particle Swarm Optimization (GPMBPSO) [52]. For a fair comparison parameters of BPSO are taken same
as MBPSO. The routine which converts binary representation into real, discussed in subsection 4.1 is used for BPSO and
GPMBPSO also. For GPMBPSO all parameters are same as given in the original paper [52] except swarm size and stopping
criteria. Swarm size and stopping criteria for GPMBPSO are same as those of BPSO and MBPSO. All results are based
on the 100 simulations of BPSO, GPMBPSO and MBPSO. Number of decision variables for all problems are taken to be 10.

From Table 3, it is clear that except for problem 8 and 9, MBPSO performs better than original BPSO and GPMBPSO [52], in
terms of reliability i.e., success rate. Efficiency (due to AFE) of MBPSO is also superior to both other versions except for
problem 4. In terms of accuracy (due to AE), MBPSO is again better than BPSO and GPMBPSO except for problems
7, 8 and 9.

To observe the consolidated effect of success rate, average number of function evaluations and average error on BPSO,
GPMBPSO, and MBPSO, a Performance Index (PI) is used as given in [53]. The relative performance of an algorithm using this
PI is calculated as:
Table 3
Compar

Com

SR

AFE

AE
PI ¼ 1
NP

XNp

i¼1

k1ai
1 þ k2ai

2 þ k3ai
3

� �
;

where ai
1 ¼ Sri

Tri,
ai
2 ¼

Mf i

Af i ; if Sri > 0

0; if Sri ¼ 0

8<
: and

ai
3 ¼

Mei

Aei ; if Sri > 0

0; if Sri ¼ 0

(

i ¼ 1;2; . . . ;Np:
ative results of BPSO, GPMBPSO and proposed MBPSO on Test Problems.

parison Criterion Function Serial No. BPSO GPMBPSO MBPSO

1. 100 100 100
2. 97 89 100
3. 0 0 18
4. 100 100 100
5. 0 2 63
6. 3 10 14
7. 2 13 15
8. 99 96 98
9. 100 100 99

10. 94 100 100

1. 24588 20510 16804
2. 39216 39246 27558
3. 50000 50000 47638
4. 23990 20930 25236
5. 50000 49920 41640
6. 49944 49714 49428
7. 49972 49526 49150
8. 38076 32504 30084
9. 30166 25884 22204

10. 38924 35316 34680

1. 0 0 0
2. 0.000899 0.003981 0
3. 202.87 170.6 115.45
4. 0 0 0
5. 1.74 1.55 0.41
6. 2.568 1.656 2.088
7. 0.644258 0.460274 0.485219
8. 0.06 0.643125 1.51435
9. 0 0 1

10. 0.21 0 0

J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061 11051
Sri = Number of successful runs of ith problem
Tri = Total number of runs of ith problem
Mfi = Minimum of average number of function evaluations of successful runs used by all algorithms in obtaining the solu-
tion of ith problem
Afi = Average number of function evaluations of successful runs used by an algorithm in obtaining the solution of ith
problem
Mei = Minimum of average error produced by all the algorithms in obtaining the solution of ith problem
Aei = Average error produced by an algorithm in obtaining the solution of ith problem
Np = Total number of problems analyzed.

k1,k2 and k3(k1 + k2 + k3 = 1 and 0 6 k1, k2, k3 6 1) are the weights assigned to percentage of success, average number of
function evaluations and average error of successful runs, respectively. From above definition it is clear that PI is a function
of k1,k2 and k3. Since k1 + k2 + k3 = 1, one of ki, i = 1,2,3 could be eliminated to reduce the number of dependent variables from
the expression of PI. Equal weights are assigned to two terms at a time in the PI expression. This way PI becomes a function of
one variable. The resultant cases are as follows:

(i) k1 ¼W; k2 ¼ k3 ¼ 1�W
2 ; 0 6W 6 1

(ii) k2 ¼W; k1 ¼ k3 ¼ 1�W
2 ; 0 6W 6 1

(iii) k3 ¼W; k1 ¼ k2 ¼ 1�W
2 ;0 6W 6 1

In each case, performance indices are obtained for BPSO, GPMBPSO, and MBPSO and are shown in Figs. 5–7. It can be ob-
served that in each case MBPSO performs better than GPMBPSO and BPSO while GPMBPSO is always better than BPSO. Thus,
overall MBPSO is the best performer on the set of test problems considered in this paper.

5. Application of MBPSO to 0–1 KP and MKP

Now in order to verify the feasibility and effectiveness of the proposed MBPSO method for solving some NP-complete
problems having a number of engineering applications, MBPSO is tested on 0–1 Knapsack and Multidimensional Knapsack
problems. Instances are picked from OR-Library [48] available and other online sources. Results obtained by MBPSO are com-
pared with GPMBPSO and BPSO. The parameters of GPMBPSO, BPSO and MBPSO are set as in Section 4. Static penalty func-
tion approach is applied for handling knapsack constraints. All results are based on the 100 simulations (runs) of GPMBPSO,
BPSO and MBPSO.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight W

Pe
rfo

rm
an

ce
 In

de
x

PI when K1 varies

BPSO
GPMBPSO
MBPSO

Fig. 5. Performance Index when weight to success rate k1varies.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight W

Pe
rfo

rm
an

ce
 In

de
x

PI when K2 varies

BPSO
GPMBPSO
MBPSO

Fig. 6. Performance Index when weight to AFE k2 varies.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight W

Pe
rfo

rm
an

ce
 In

de
x

PI when k3 varies

BPSO
GPMBPSO
MBPSO

Fig. 7. Performance Index when weight to AE k3 varies.

11052 J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061
5.1. 0–1 Knapsack Problem

Two sets of knapsack problems are considered here to test the efficacy of MBPSO. First set of KP instances which contains
25 instances is taken from http://www.math.mtu.edu/�kreher/cages/Data.html. The instances are used in [47] also. Number
of items in these instances ranging between 8 and 24. Since the number of items in this set is relatively small therefore a
major difference among the performance of BPSO, GPMBPSO, and MBPSO performance is not expected. Also since the

http://www.math.mtu.edu/~kreher/cages/Data.html
http://www.math.mtu.edu/~kreher/cages/Data.html

Table 4
Comparative results of problem Set I of 0–1 Knapsack Problem.

Example 0–1 Knapsack Problem No. of Items Method AVPFT MAXPFT WHTGP

1 ks_8a 8 BPSO 3921857.19 3924400 1.99
GPMBPSO 3922251.98 3924400 1.99
MBPSO 3924400 3924400 1.99

2 ks_8b 8 BPSO 3807911.86 3813669 0.7189
GPMBPSO 3807671.43 3813669 0.7189
MBPSO 3813669 3813669 0.7189

3 ks_8c 8 BPSO 3328608.71 3347452 0.6540
GPMBPSO 3326300.19 3347452 0.6540
MBPSO 3347452 3347452 0.6540

4 ks_8d 8 BPSO 4186088.27 4187707 2.9984
GPMBPSO 4184469.54 4187707 2.9984
MBPSO 4187707 4187707 2.9984

5 ks_8e 8 BPSO 4932737.28 4955555 2.0509
GPMBPSO 4921758.82 4955555 2.0509
MBPSO 4954571.72 4955555 2.0509

6 ks_12a 12 BPSO 5683694.29 5688887 0.2557
GPMBPSO 5678227.28 5688887 0.2557
MBPSO 5688552.41 5688887 0.2557

7 ks_12b 12 BPSO 6478582.96 6498597 0.0636
GPMBPSO 6476487.08 6498597 0.0636
MBPSO 6493130.57 6498597 0.0636

8 ks_12c 12 BPSO 5166957.08 5170626 0.7633
GPMBPSO 5162237.91 5170626 0.7633
MBPSO 5170493.3 5170626 0.7633

9 ks_12d 12 BPSO 6989842.73 6992404 0.5875
GPMBPSO 6988151.02 6992404 0.5875
MBPSO 6992144.26 6992404 0.5875

10 ks_12e 12 BPSO 5316879.59 5337472 0.2186
GPMBPSO 5301119.31 5337472 0.2186
MBPSO 5337472 5337472 0.2186

11 ks_16a 16 BPSO 7834900.26 7850983 0.2367
GPMBPSO 7826923.53 7850983 0.2367
MBPSO 7843073.29 7850983 0.2367

12 ks_16b 16 BPSO 9334408.62 9352998 0.0153
GPMBPSO 9326158.74 9352998 0.0153
MBPSO 9350353.39 9352998 0.0153

13 ks_16c 16 BPSO 9118837.47 9151147 0.603
GPMBPSO 9114581.85 9151147 0.6038
MBPSO 9144118.38 9151147 0.6038

14 ks_16d 16 BPSO 9321705.87 9348889 0.1396
GPMBPSO 9317336.67 9348889 0.1396
MBPSO 9337915.64 9348889 0.1396

15 ks_16e 16 BPSO 7758572.21 7769117 0.2014
GPMBPSO 7757247.79 7769117 0.2014
MBPSO 7764131.81 7769117 0.2014

16 ks_20a 20 BPSO 10707360.91 10727049 0.0574
GPMBPSO 10702954.99 10727049 0.0574
MBPSO 10720314.03 10727049 0.0574

17 ks_20b 20 BPSO 9791306.65 9818261 0.2030
GPMBPSO 9786719.85 9818261 0.2030
MBPSO 9805480.48 9818261 0.2030

18 ks_20c 20 BPSO 10703423.34 10714023 0.1966
GPMBPSO 10695550.75 10714023 0.1966
MBPSO 10710947.05 10714023 0.1966

19 ks_20d 20 BPSO 8910152.57 8929156 0.0938
GPMBPSO 8905564.36 8929156 0.0938
MBPSO 8923712.21 8929156 0.0938

20 ks_20e 20 BPSO 9349546.98 9357969 0.1327
GPMBPSO 9343911.1 9357969 0.1327
MBPSO 9355930.35 9357969 0.1327

(continued on next page)

J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061 11053

Table 4 (continued)

Example 0–1 Knapsack Problem No. of Items Method AVPFT MAXPFT WHTGP

21 ks_24a 24 BPSO 13510432.96 13549094 0.0252
GPMBPSO 13506115.12 13549094 0.0252
MBPSO 13532060.07 13549094 0.0252

22 ks_24b 24 BPSO 12205346.16 12233713 0.0847
GPMBPSO 12202425.75 12233713 0.0847
MBPSO 12223442.61 12233713 0.0847

23 ks_24c 24 BPSO 12427880.56 12448780 0.1492
GPMBPSO 12419101.82 12448780 0.1492
MBPSO 12443349.03 12448780 0.1492

24 ks_24d 24 BPSO 11792064.76 11815315 0.0986
GPMBPSO 11791581.41 11815315 0.0986
MBPSO 11803712.38 11815315 0.0986

25 ks_24e 24 BPSO 13922797.55 13940099 0.2527
GPMBPSO 13921046.22 13940099 0.2527
MBPSO 13932526.16 13940099 0.2527

1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 104

M
AX

PF
T-

AV
PF

T

 BPSO GPMBPSO MBPSO

Fig. 8. Boxplot of problem set I of 0–1 Knapsack Problem.

11054 J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061
instances are generated randomly and the optimum solution is not known, the results of all three versions of binary PSO are
compared on the basis of maximum profit over 100 runs (MAXPFT), average profit over 100 runs (AVPFT), and total weight

gap, in percentage, in case of maximum profit ¼ ðweight limit�weight when the maximum profit is reportedÞ
weight limit

h i
� 100

� �
denoted as WHTGP.

Second set of KP instances is taken from http://www.cs.colostate.edu/�cs575dl/assignments/assignment5. html and [6] with
number of items between 10 and 500. The optimum solutions of these instances are known; therefore the comparison is
made on the basis of success rate (= total number of runs out of 100 that produces optimum solution within the termination
criterion) denoted by SR, average number of function evaluations (= average of function evaluations used in all 100 simula-
tions) denoted by AFE, average error (= average of —optimum solution – obtained solution— over runs in which, obtained
solution is feasible) denoted by AE, least error (= minimum of —optimum solution – obtained solution— over runs in which,
obtained solution is feasible) denoted by LE, and the standard deviation of error denoted by SD. It should be noted that SD
considered in this paper is of feasible solutions only.

From Table 4, which summarizes the results of first problem set, it is clear that maximum profit MAXPFT of 100 runs by
BPSO, GPMBPSO, and MBPSO is same for all instances (i.e., performance of all three versions is same, if the best solution of
100 runs is considered). Obviously, the WHTGP will also be same for all three algorithms. Now, if we see AVPFT then a minor
improvement of MBPSO over GPMBPSO and BPSO can be observed. For all the instances, AVPFT of MBPSO is slightly greater

http://www.cs.colostate.edu/~cs575dl/assignments/assignment5
http://www.cs.colostate.edu/~cs575dl/assignments/assignment5

Table 5
Comparative results of Problem Set II of 0–1 Knapsack Problem.

Example Number of items Optimal solution Algorithm SR AFE AE LE SD

1 10 295 BPSO 99 681 0.02 0 0.1989
GPMBPSO 100 391 0 0 0
MBPSO 100 543 0 0 0

2 20 1024 BPSO 100 1130 0 0 0
GPMBPSO 100 1036 0 0 0
MBPSO 100 2952 0 0 0

3 50 3112 BPSO 35 109819 2.46 0 3.2478
GPMBPSO 46 96422 1.91 0 2.9294
MBPSO 66 62212 0.68 0 1.4274

4 100 2683223 BPSO 20 268715 694.39 0 466.9345
GPMBPSO 24 266190 761.96 0 556.9693
MBPSO 50 241805 284.03 0 325.2135

5 200 5180258 BPSO 0 600000 688.55 160 276.0619
GPMBPSO 0 600000 689.58 159 278.3393
MBPSO 0 600000 872.74 25 432.8804

6 500 1359213 BPSO 0 1500000 1216.73 880 153.3096
GPMBPSO 0 1500000 1251.46 793 223.4678
MBPSO 0 1500000 1248.96 586 275.2432

1 2 3
0

50

100

SR

BPSO GPMBPSO MBPSO
1 2 3

100

105

1010

AF
E

BPSO GPMBPSO MBPSO

1 2 3
0

500

1000

AE

BPSO GPMBPSO MBPSO
1 2 3

0
200
400
600
800

LE

BPSO GPMBPSO MBPSO

1 2 3
0

200

400

SD

BPSO GPMBPSO MBPSO

Fig. 9. Boxplots of problem set II of Knapsack Problem.

J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061 11055
than GPMBPSO and BPSO. A statistical view in terms of boxplot as shown in Fig. 8 is more appropriate to see the improve-
ment of MBPSO over GPMBPSO and BPSO. In Fig. 8, boxplots of BPSO, GPMBPSO, and MBPSO are plotted for difference (MAX-
PFT – AVPFT). Clearly, the boxplot of MBPSO is close to zero and has less height than that of BPSO and GPMBPSO. This shows
that the minimum value, median, maximum value, quartiles, and standard deviation of the difference discussed above are
least for MBPSO as compare to other two versions and therefore, MBPSO is relatively better than BPSO and GPMBPSO.

Results of problem set II are given in Table 5. It is evident that MBPSO shows higher success rate for all problems. Thus,
MBPSO is more reliable than BPSO and GPMBPSO. AFE are also least, in case of MBPSO for all instances except instance 2. This
shows that MBPSO is comparatively fast. It can also be seen than MBPSO is better than BPSO and GPMBPSO from the point of
view of LE, AE and SD which reflects higher accuracy of MBPSO than BPSO and GPMBPSO. A comparative analysis of BPSO,
GPMBPSO, and MBPSO can be seen at a glance using boxplots. The boxplots, of these versions, for all comparison criteria are
shown in Fig. 9 and establish the fact that MBPSO is more effective than BPSO and GPMBPSO in almost all criteria considered
here.

Table 6
Comparative results of Problem Set I of Multidimensional Knapsack Problem.

Example Instance Algorithm SR AFE AE LE SD

1 Sento1 BPSO 43 112666 19.67 0 26.1228
GPMBPSO 41 120004 22.56 0 29.57
MBPSO 52 111303 9.96 0 15.1195

2 Sento2 BPSO 11 162720 16.08 0 12.1579
GPMBPSO 9 165742 18.59 0 16.397
MBPSO 44 125271 5.4 0 6.63325

3 Weing1 BPSO 88 14197.4 63.79 0 174.729
GPMBPSO 77 23018.8 122.71 0 227.584
MBPSO 100 9444.4 0 0 0

4 Weing2 BPSO 90 12916.4 23.1 0 96.6405
GPMBPSO 81 22365 89.28 0 602.013
MBPSO 99 10502.8 1.6 0 15.9198

5 Weing3 BPSO 15 73451 787.34 0 775.814
GPMBPSO 8 78121.4 1190.41 0 888.113
MBPSO 37 57626.8 347.86 0 373.721

6 Weing4 BPSO 80 21802.2 401.09 0 1035.9
GPMBPSO 77 23394 424.92 0 1044.12
MBPSO 99 9403.8 27.15 0 270.139

7 Weing5 BPSO 59 38638.6 1274.05 0 1792.49
GPMBPSO 52 43097.6 1745.73 0 1965.89
MBPSO 86 20804 384.4 0 1131.66

8 Weing6 BPSO 31 59742.2 278.6 0 209.203
GPMBPSO 37 54406.8 302.7 0 320.633
MBPSO 74 29729 101.4 0 171.067

9 Weing7 BPSO 5 301444 321.69 0 727.039
GPMBPSO 4 303594 502.22 0 875.657
MBPSO 41 230180 38.33 0 33.9594

10 Weing8 BPSO 92 115354 0.08 0 0.271293
GPMBPSO 95 98974 0.05 0 0.217945
MBPSO 89 154350 0.11 0 0.31289

1 2 3
0

20

40

60

80

100

SR

 BPSO GPMBPSO MBPSO
1 2 3

0

1

2

3
x 105

AF
E

 BPSO GPMBPSO MBPSO

1 2 3
0

500

1000

1500

AE

 BPSO GPMBPSO MBPSO
1 2 3

0

500

1000

1500

2000

SD

 BPSO GPMBPSO MBPSO

Fig. 10. Boxplots of problem set I of Multidimensional Knapsack Problem.

11056 J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061

Table 7
Comparative results of Problem Set II of Multidimensional Knapsack Problem.

Example Algorithm SR AFE AE LE SD No. of Ifs

1 BPSO 92 11697 5.53 0 19.2408 0
GPMBPSO 89 13677 6.46 0 19.833 0
MBPSO 100 10548 0 0 0 0

2 BPSO 68 33414 2.89 0 6.77332 0
GPMBPSO 60 41091 7.06 0 14.3205 0
MBPSO 80 26451 1 0 2 0

3 BPSO 85 18598.5 10.5 0 26.2661 0
GPMBPSO 81 21778.5 13.09 0 30.4963 0
MBPSO 98 12973.5 0.72 0 6.3231 0

4 BPSO 100 3492 0 0 0 0
GPMBPSO 99 5832 0.3 0 2.98496 0
MBPSO 100 9447 0 0 0 0

5 BPSO 100 3640.5 0 0 0 0
GPMBPSO 100 3487.5 0 0 0 0
MBPSO 100 9688.5 0 0 0 0

6 BPSO 52 63414 8.45 0 9.68646 0
GPMBPSO 34 82518 12.66 0 11.961 0
MBPSO 80 41088 3.25 0 6.58692 0

7 BPSO 74 37090 5.38 0 9.24097 0
GPMBPSO 61 52018 9.49 0 16.6418 0
MBPSO 99 21236 0.18 0 1.79098 0

8 BPSO 52 61776 3 0 6.44515 0
GPMBPSO 44 70108 6.86 0 15.7022 0
MBPSO 95 25154 0.1 0 0.43589 0

9 BPSO 95 13262 1.82 0 8.00547 0
GPMBPSO 83 28034 8.71 0 24.8311 0
MBPSO 100 17920 0 0 0 0

10 BPSO 61 73976 9.25 0 16.9313 0
GPMBPSO 62 71134 11.37 0 21.4363 0
MBPSO 98 26960 0.81 0 5.9828 0

11 BPSO 24 121124 18.7895 0 36.9759 62
GPMBPSO 13 134650 4.20E + 19 0 395.779 42
MBPSO 41 102264 41.3371 0 200.864 11

12 BPSO 79 42046 5.45 0 17.0613 0
GPMBPSO 74 52362 10.15 0 24.0746 0
MBPSO 99 26214 0.01 0 0.099499 0

13 BPSO 89 33798 9.6 0 30.2949 0
GPMBPSO 82 43350 2.00E + 18 0 30.3244 2
MBPSO 95 32464 0.791667 0 7.71621 4

14 BPSO 70 66608 11.65 0 19.4779 0
GPMBPSO 54 93602 2.00E + 18 0 34.3155 2
MBPSO 88 49094 2.28421 0 8.09894 5

15 BPSO 91 45150 0.774194 0 5.35238 7
GPMBPSO 79 62866 3.00E + 18 0 19.3973 3
MBPSO 97 26418 1.29 0 7.81447 0

16 BPSO 49 100968 5.13 0 13.3227 0
GPMBPSO 26 139708 11.75 0 22.4082 0
MBPSO 91 44278 0.9 0 7.36682 0

17 BPSO 75 60796 2.94 0 5.54945 0
GPMBPSO 60 84712 4.76 0 6.24999 0
MBPSO 100 26606 0 0 0 0

18 BPSO 36 142116 11.25 0 13.1129 0
GPMBPSO 34 146216 13.05 0 14.6447 0
MBPSO 85 60386 1.78 0 5.28504 0

19 BPSO 29 161562 255 0 248.444 66
GPMBPSO 32 163814 2.80E + 19 0 68.837 28
MBPSO 51 125192 13.5684 0 22.9474 5

20 BPSO 79 68938 4.24 0 9.23485 0
GPMBPSO 69 85398 6.97 0 12.4398 0
MBPSO 96 42082 0.86 0 5.28398 0

(continued on next page)

J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061 11057

Table 7 (continued)

Example Algorithm SR AFE AE LE SD No. of Ifs

21 BPSO 73 74202 11.73 0 20.3955 0
GPMBPSO 42 143970 6.00E + 18 0 23.7576 6
MBPSO 77 76974 8.08511 0 17.6838 6

22 BPSO 37 163616 22.81 0 25.9806 0
GPMBPSO 26 193898 1.10E + 19 0 31.2043 11
MBPSO 45 150994 12.0706 0 17.1277 15

23 BPSO 1 238056 14.5 0 19.1563 86
GPMBPSO 7 230698 6.40E + 19 0 32.6514 64
MBPSO 10 225526 25.0517 0 42.3526 42

24 BPSO 52 136256 7.74 0 13.0043 0
GPMBPSO 48 156092 11.5 0 17.5137 0
MBPSO 90 58560 0.5 0 1.5 0

25 BPSO 25 191000 13.59 0 9.84083 0
GPMBPSO 25 194452 14.68 0 11.5394 0
MBPSO 52 136124 7.84 0 8.28941 0

26 BPSO 0 240000 899 550 833.4 49
GPMBPSO 0 240000 5.30E + 19 550 28284.9 53
MBPSO 0 240000 587.485 550 27.5674 3

27 BPSO 19 228766 98 0 95.5186 80
GPMBPSO 27 223438 5.80E + 19 0 47.2344 58
MBPSO 77 122464 20.3371 0 90.701 11

28 BPSO 35 205826 40.7368 0 215.87 43
GPMBPSO 13 247132 7.30E + 19 0 534.32 73
MBPSO 10 247890 149 0 140 26

29 BPSO 0 270000 678 459 702.51 95
GPMBPSO 0 270000 9.90E + 19 486 0 99
MBPSO 0 270000 586 586 0 99

30 BPSO 47 159064 7.72 0 11.0309 0
GPMBPSO 37 191942 8.95 0 11.6562 0
MBPSO 72 106162 1.73 0 4.7241 0

31 BPSO 21 65487.2 27.35 0 22.4229 0
GPMBPSO 10 73510.2 35.28 0 26.3492 0
MBPSO 45 50067.4 10.85 0 12.0982 0

32 BPSO 19 85207.4 42.07 0 41.9157 0
GPMBPSO 17 86609.9 39.62 0 36.224 0
MBPSO 65 48954.9 7.27 0 11.7217 0

33 BPSO 31 61568.4 200.86 0 169.25 0
GPMBPSO 21 70313.4 2935.64 0 1732.02 0
MBPSO 40 58014.5 102.86 0 108.55 0

34 BPSO 12 53750 44.62 0 23.9778 0
GPMBPSO 7 57180 48.79 0 21.5078 0
MBPSO 36 42081 22 0 22.1418 0

35 BPSO 38 78800 17.64 0 20.7627 0
GPMBPSO 54 62148 14.94 0 27.0059 0
MBPSO 59 61812 8.95 0 14.0224 0

36 BPSO 8 103467 13.56 0 8.91327 0
GPMBPSO 20 91850.6 12.65 0 10.2834 0
MBPSO 44 72677.3 5.19 0 5.89694 0

37 BPSO 29 61070.8 21.81 0 19.7386 0
GPMBPSO 11 76214.6 32.5 0 25.345 0
MBPSO 48 50002.4 10.96 0 13.5033 0

38 BPSO 21 85300.3 41.29 0 36.0559 0
GPMBPSO 22 83774.3 39.42 0 42.0179 0
MBPSO 58 56075.3 10.51 0 16.9555 0

11058 J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061
5.2. Multidimensional Knapsack Problem

MBPSO has also been tested on two groups of benchmarks of MKP selected from OR-Library [48], the first group corre-
sponds to series ‘‘sento’’ [49] and ‘‘weing’’ [50] which contains 10 instances and the number of items ranging between 28
to 105. The second group corresponds to ‘‘weish’’[51], which contains 38 instances and the number of items ranging between
20 and 90. These instances have also been solved by BPSO in [37]. Since we have considered MKP instances, whose optimal

1 2 3
0

20

40

60

80

100

SR

 BPSO GPMBPSO MBPSO
1 2 3

0

0.5

1

1.5

2

2.5

x 105

AF
E

 BPSO GPMBPSO MBPSO

1 2 3
0

2

4

6

8

10
x 1019

AE

 BPSO GPMBPSO MBPSO

1 2 3
0

0.5

1

1.5

2

2.5

x 104

SD
 BPSO GPMBPSO MBPSO

Fig. 11. Boxplots of problem set II of Multidimensional Knapsack Problem.

J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061 11059
solution is known, therefore the comparison between BPSO, GPMBPSO, and MBPSO is carried out, on the basis of SR, AFE, AE,
LE and SD as in Section 5.1.

The experimental results of instances of first group obtained by BPSO, GPMBPSO, and MBPSO are shown in Table 6. Here,
second column contains the name of the instance. From Table 6, it is clear that MBPSO is more reliable than BPSO and GPMB-
PSO as success rate (SR) for MBPSO is higher than that of other two for 9 instances out of 10. Average number of function
evaluations, AFE for MBPSO are also less than that of BPSO and GPMBPSO for 9 instances indicating capability of MBPSO
of giving solution faster. Also MBPSO is able to provide better quality solution for MKP as AE, LE and SD is least for MBPSO
for most of the instances. An overall strength of MBPSO with respect to BPSO and GPMBPSO can be seen from boxplots,
shown in Fig. 10. In Fig. 10, the boxplots of BPSO, GPMBPSO and MBPSO for SR, AFE, AE and SD are shown.

Table 7 shows the results of problem set II of MKP. Since all solutions are not feasible so for this problem set, number of
infeasible solutions (No. of IFs) are shown in the last column in addition to the other information. Note that the AE, LE and SD
are computed only for feasible solutions. Fig. 11 shows the boxplot for problem set II of MKP. From Table 7 and Fig. 11, it is
obvious that MBPSO is better in reliability, accuracy, and computational cost than BPSO and GPMBPSO. Number of infeasible
solutions obtained by MBPSO is higher in 5 problems, lower in 7 problems and same in other problems. This fact also verifies
a better reliability of MBPSO as compare to BPSO and GPMBPSO.

6. Conclusion

In this paper, a new Binary Particle Swarm Optimization technique, namely, Modified Binary Particle Swarm Optimization
(MBPSO) algorithm for Knapsack Problems (KPs) is proposed. The proposed algorithm is first tested on 10 benchmark prob-
lems and the obtained results are compared with that of BPSO as well as a modified version of BPSO found in literature,
namely, Genotype–Phenotype Modified Binary Particle Swarm Optimization (GPMBPSO). The proposed algorithm is then ap-
plied to 0–1 Knapsack Problem (KP) and Multidimensional Problem (MKP). 31 (25 + 6) instances of KP and 48 (10 + 38) in-
stances of MKP are considered to verify the performance of proposed MBPSO. Obtained results prove that MBPSO
outperforms BPSO and GPMBPSO in terms of reliability, cost and quality of solution.

The method can also be extended to other combinatorial optimization problems. However, our aim is specially to design
MBPSO only for KPs, but for other real world binary optimization problems, MBPSO may be examined. MBPSO, with different
parameter settings may also be tested as in this paper, no computations are carried out to optimize the MBPSO parameters
except Vmax, what could provide better results.

Acknowledgements

Authors gratefully acknowledge the discussion with Prof. Andries Engelbrecht, University of Pretoria, and Dr. Adnan Acan,
Eastern Mediterranean University, CYPRUS, in preparation of this research article. The author expresses his gratitude to the
anonymous reviewers whose suggestions have resulted in an improved presentation of this paper.

11060 J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061
References

[1] G.B. Dantzig, Discrete variable extremum problems, Operations Research 5 (1957) 266–277.
[2] A. Liu, J. Wang, G. Han, S. Wang, J. Wen, Improved simulated annealing algorithm solving for 0/1 knapsack problem, in: Proceedings of the Sixth

international Conference on Intelligent Systems Design and Applications, ISDA, vol. 02, IEEE Computer Society, Washington, DC, 2006, pp. 1159–1164.
[3] J. Thiel, S. Voss, Some experiences on solving multiconstraint zero-one knapsack problems with genetic algorithms, INFOR, Canada, vol. 32, 1994, pp.

226–242.
[4] P.C. Chu, J.E. Beasley, A genetic algorithm for the multidimensional knapsack problem, Journal of Heuristics 4 (1998) 63–86.
[5] Hongwei Huo, Jin Xu, Zheng Bao, Solving 0/1 knapsack problem using genetic algorithm, Journal of Xidian University 26 (4) (1999) 493–497.
[6] P. Zhao, P. Zhao, X. Zhang, A new ant colony optimization for the knapsack problem, in: Proceedings of Seventh International Conference on Computer

– Aided Industrial Design and Conceptual Design, November 17–19, 2006, pp. 1–3.
[7] H. Shi, Solution to 0/1 knapsack problem based on improved ant colony algorithm, international conference on information acquisition, in: IEEE

International Conference on Information Acquisition, 2006, pp. 1062–1066.
[8] C. Peng, Z. Jian Li, Liu, Solving 0–1 knapsack problems by a discrete binary version of differential evolution, in: Second International Symposium on

Intelligent Information Technology Application, IITA ’08, vol. 2, 2008, pp. 513–516.
[9] W. Lei, P. Jin, J. Licheng, Immune algorithm, Acta Electronica Sinia 28 (7) (2000) 74–78.

[10] B. Ye, J. Sun, Wen-Bo Xu, Solving the hard knapsack problems with a binary particle swarm approach, ICIC 2006, LNBI 4115, 2006, pp. 155–163.
[11] X. Shen, Y. Li, Wei Wang, A dynamic adaptive particle swarm optimization optimization for knapsack problem, in: Proceedings of the Sixth World

Congress on Intelligent Control and Automation, June 21–23, Dalian, China, 2006, pp. 3183–3187.
[12] X. Shen, W. Wang, P. Zheng, Modified particle swarm optimization for 0–1 knapsack problem, Computer Engineering 32 (18) (2006) 23–24. 38.
[13] Yi-Chao He, L. Zhou, Chun-Pu Shen, A greedy particle swarm optimization for solving knapsack problem, in: International Conference on Machine

Learning and Cybernetics, vol. 2, 2007, pp. 995–998.
[14] Guo-Li Zhang, Yi Wei, An improved particle swarm optimization algorithm for solving 0–1 knapsack problem, in: Proceedings of the Seventh

International Conference on Machine Learning and Cybernetics, Kunming, 12–15 July 2008, pp. 915–918 .
[15] J. Puchinger, G. Raidl, U. Pferschy, The multidimensional knapsack problem, Structure and algorithms, Technical Report 006149, National ICT Australia,

Melbourne, Australia, 2007.
[16] F. Dammeyer, S. Voss, Dynamic tabu list management using reverse elimination method, Annals of Operations Research 41 (1993) 31–46.
[17] R. Aboudi, K. Jornsten, Tabu search for general zero-one integer programs using the pivot and complement heuristic, ORSA Journal on Computing 6

(1994) 82–93.
[18] R. Battiti, G. Tecchiolli, Local search with memory: benchmarking RTS, OR Spektrum 17 (1995) 67–86.
[19] F. Glover, G.A. Kochenberger, Critical event tabu search for multidimensional knapsack problem, in: I.H. Osman, J.P. Kelly (Eds.), Meta-Heuristics:

Theory and Applications, Kluwer Academic Publishers, 1996, pp. 407–427.
[20] M. Vasquez, Jin-Kao Hao, A hybrid approach for the 0–1 multidimensional knapsack problem, in: Proceedings of IJCAI-01, Seatle, Washington, 2001, pp.

328-333.
[21] V.C. Li, Tight oscillations tabu search for multidimensional knapsack problems with generalized upper bound constraints, Computers and Operations

Research 32 (11) (2005) 2843–2852.
[22] V.C. Li, G.L. Curry, Solving multidimensional knapsack problems with generalized upper bound constraints using critical event tabu search, Computers

and Operations Research 32 (4) (2005) 825–848.
[23] S. Khuri, T. Back, J. Heitkotter, The zero/one multiple knapsack problem and genetic algorithm, Proceedings of the 1994 ACM Symposium on Applied

Computing (SAC’94), ACM Press, 1994, pp. 188–193.
[24] G. Rudolph, J.A. Sprave, Cellular genetic algorithm with self-adjusting acceptance threshold, in: Proceeding of the First IEE/IEEE International

Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, IEE, London, 1995, pp. 365–372.
[25] C. Cotta, J.Ma. Troya, A Hybrid genetic Algorithm for the 0–1 multiple knapsack problem, in: Proceedings of the International Conference on Artificial

Networks and Genetic Algorithm, Springer-Verlag, Berlin, 1997, pp. 250–254.
[26] K. Kato, M. Sakawa, Genetic algorithms with decomposition procedures for multidimensional 0–1 knapsack problems with block angular structures,

IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 33 (3) (2003) 410–419.
[27] Hong Li, Yong-Chang Jiao, Li Zhang, Ze-Wei Gu, Genetic algorithm based on the orthogonal design for multidimensional knapsack problems, ICNC

2006, Part I, LNCS 4221, 2006, pp. 696–705.
[28] F. Djannaty, S. Doostdar, A hybrid genetic algorithm for the multidimensional knapsack problem, International Journal of Contemporary Mathematics

Sciences 3 (9) (2008) 443–456.
[29] M. Kong, P. Tian, Y. Kao, A new ant colony optimization algorithm for the multidimensional Knapsack problem, Computers and Operations Research 35

(8) (2008) 2672–2683.
[30] Ji Junzhong, Huang Zhen, Chunnian Liu, An ant colony optimization algorithm for solving the multidimensional knapsack problems, in: IEEE/WIC/ACM

International Conference on Intelligent Agent Technology, 2007, pp. 10–16.
[31] I. Alaya, C. Solnon, K. Ghdira, Ant algorithm for the multi-dimensional knapsack problem, in: International Conference on Bioinspired Optimization

Methods and their Applications (BIOMA 2004), 2004, pp. 63–72.
[32] S. Uyar, G. Eryigit, Improvements to penalty-based evolutionary algorithms for the multi-dimensional knapsack problem using a gene-based adaptive

mutation approach, GECCO (2005) 1257–1264.
[33] A. Drexl, A simulated annealing approach to the multiconstraint zero-one knapsack problem, Computing 40 (1) (1988) 1–8.
[34] M. Gong, L. Jiao, Ma Wenping, Gou Shuiping, Solving multidimensional knapsack problems by an immune-inspired algorithm, in: IEEE Congress on

Evolutionary Computation, 2007, pp. 3385–3391.
[35] M. Kong, P. Tian, Apply the particle swarm optimization to the multidimensional knapsack problem, ICAISC 2006, vol. 4029, Springer, Berlin,

Heidelberg, 2006, pp. 1140–1149.
[36] F. Hembecker, Heitor S. Lopes, Godoy Walter Jr., Particle swarm optimization for the multidimensional knapsack problem, Adaptive and Natural

Computing Algorithms, vol. 4431, Springer, Berlin, Heidelberg, 2007, pp. 358–365.
[37] K. Deep, J.C. Bansal, A socio-cognitive particle swarm optimization for multi-dimensional knapsack problem, in: First International Conference on

Emerging Trends in Engineering and Technology ICETET, India, 2008, pp. 355–360.
[38] K. Fleszar, K.S. Hindi, Fast, effective heuristics for the 0–1 multi-dimensional knapsack problem, Computers and Operations Research 36 (5) (2009)

1602–1607.
[39] J. Gottlieb, Permutation-based evolutionary algorithms for multidimensional knapsack problems, in: J. Carroll, E. Damiani, H. Haddad, D. Oppenheim

(Eds.), Proceedings of the 2000 ACM Symposium on Applied Computing, SAC ’00, vol. 1, ACM, New York, NY, 2000, pp. 408–414. Como, Italy.
[40] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings IEEE International Conference Neural Networks, vol. 4, 1942–1948, 1995.
[41] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of Sixth International Symposium Micro Machine Human

Science, 1995, pp. 39–45.
[42] A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part I: Background and development, Natural Computing: An International

Journal 6 (4) (2007) 467–484.
[43] A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part II: Hybridisation, combinatorial, multicriteria and constrained

optimization and indicative applications, Natural Computing 7 (1) (2008) 109–124.
[44] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization: an overview, Swarm Intelligence 1 (2007) 33–57.

J.C. Bansal, K. Deep / Applied Mathematics and Computation 218 (2012) 11042–11061 11061
[45] J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm optimization, in: Proceedings of the world Multiconference on Systemics,
Cybernetics, Informatics, 1997, pp. 4104–4109.

[46] A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley and Sons, Ltd., 2005. p. 330.
[47] Lee Chou-Yuan, Lee Zne-Jung, Su Shun-Feng, A new approach for solving 0/1 knapsack problem, IEEE International Conference on Systems, Man, and

Cybernetics October 8–11, Taipei, Taiwan, 2006, pp. 3138–3143.
[48] J.E. Beasley, ORLib – Operations Research Library. [http://people.brunel.ac.uk/�mastjjb/jeb/orlib/mknapinfo.html], (2005).
[49] S. Senyu, Y. Toyoda, An approach to linear programming with 0–1 variables, Management Science 15 (1967) B196–B207.
[50] H.M. Weingartner, D.N. Ness, Methods for the solution of the multidimensional 0/1 knapsack problem, Operations Research 15 (1967) 83–103.
[51] W. Shih, A branch and bound method for the multiconstraint zero-one knapsack problem, Journal of Operations Research Society 30 (1979) 369–378.
[52] Sangwook Lee, Sangmoon Soak, Sanghoun Oh, Witold Pedrycz, Moongu Jeon, Modified binary particle swarm optimization, Progress in Natural Science

18 (9) (2008) 1161–1166.
[53] K. Deep, J.C. Bansal, Mean particle swarm optimisation for function optimisation, International Journal of Computational Intelligence Studies 1 (1)

(2009) 72–92.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

	A Modified Binary Particle Swarm Optimization for Knapsack Problems
	1 Introduction
	1.1 0–1 Knapsack Problem
	1.2 Multidimensional Knapsack Problem

	2 Binary Particle Swarm Optimization
	3 The proposed Modified Binary Particle Swarm Optimization (MBPSO)
	3.1 Motivation
	3.1.1 Case I: When steepness λ is close to 0:
	3.1.2 Case II: when steepness λ is increased:

	3.2 Modified Binary Particle Swarm Optimization

	4 Results and discussions
	4.1 Fine Tuning of Vmax
	4.2 Comparative Study

	5 Application of MBPSO to 0–1 KP and MKP
	5.1 0–1 Knapsack Problem
	5.2 Multidimensional Knapsack Problem

	6 Conclusion
	Acknowledgements
	References

