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Escalated convergent artificial bee colony
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Artificial bee colony (ABC)optimisation algorithm is a recent, fast and easy-to-implement
population-based meta heuristic for optimisation. ABC has been proved a rival algorithm
with some popular swarm intelligence-based algorithms such as particle swarm
optimisation, firefly algorithm and ant colony optimisation. The solution search equation
ofABC is influenced by a randomquantitywhich helps its search process in exploration at
the cost of exploitation. In order to find a fast convergent behaviour of ABC while
exploitation capability is maintained, in this paper basic ABC is modified in two ways.
First, to improve exploitation capability, two local search strategies, namely classical
unidimensional local search and levy flight random walk-based local search are
incorporated with ABC. Furthermore, a new solution search strategy, namely stochastic
diffusion scout search is proposed and incorporated into the scout bee phase to provide
more chance to abandon solution to improve itself. Efficiency of the proposed algorithm is
testedon20benchmark test functions of different complexities andcharacteristics.Results
are very promising and they prove it to be a competitive algorithm in the field of swarm
intelligence-based algorithms.

Keywords: optimisation; swarm intelligence; memetic algorithm; artificial bee colony

1. Introduction

During the current decade, swarm intelligence is being used broadly to solve optimisation

problems. Swarm intelligence is based on the collective behaviour of social structures, which

find solutions by collaborative trial and error. Researchers designed algorithms by analysing

this solution finding behaviours of social insects to deal with nonlinear, non-convex or discrete

optimisation problems. Previous research (Dorigo & Di Caro, 1999; Kennedy & Eberhart,

1995; Price, Storn, & Lampinen, 2005; Vesterstrom & Thomsen, 2004) has proven that

algorithms based on swarm intelligence have great potential to deal with complex real-world

optimisation problems. The set of algorithms in this category includes spider monkey

optimisation (Bansal, Sharma, Jadon, & Clerc, 2014), particle swarm optimisation (Kennedy

& Eberhart, 1995), ant colony optimisation (Dorigo & Di Caro, 1999), bacterial foraging

optimisation (Passino, 2002), firefly algorithm (Yang, 2010), artificial bee colony (ABC)

optimisation (Karaboga, 2005), etc.

The ABC optimisation algorithm, introduced by Karaboga (2005), is relatively a new

member in swarm intelligence-based algorithms family. The ABC algorithm is a simple

population-based optimisation algorithm which mimics foraging behaviour of honeybees while

searching food sources for them. Here population consists of the potential solutions in terms of
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the food sources for honeybees. The fitness of each food source is determined in terms of nectar

amount that it has. The whole ABC procedure includes two fundamental processes: variation

process and the selection process which are responsible for exploration and exploitation,

respectively. But Karaboga and Akay (2009) concluded that without converging to a local

optimum, it may occasionally stop proceeding towards the global optimum. Zhu and Kwong

(2010) also observed that the solution search equation of the ABC algorithm has good

exploration but at the cost of exploitation. Therefore, removal of the same demands

hybridisation of one or more local search approaches in the basic ABC to enhance the

exploitation in the search region. Recently, Sharma, Jadon, Bansal, and Arya (2013) proposed a

levy flight local search (LFLS) strategy and incorporated the proposed strategy with differential

evolution (DE) algorithm. Neri and Tirronen (2009) proposed the scale factor local search DE

which is a memetic algorithm composed of DE and two simple local search strategies namely

golden section search and hill climbing. Kang, Li, Ma, and Li (2011) proposed a Hooke Jeeves

artificial bee colony algorithm (HJABC) for numerical optimisation. In HJABC, the authors

incorporated a local search technique which is based on the Hooke Jeeves method (Hooke &

Jeeves, 1961) with the basic ABC. Bansal, Sharma, Arya, and Nagar (2013) also incorporated

the concept of memetic search in ABC to enhance its exploitation capabilities. Furthermore,

Mezura-Montes and Velez-Koeppel (2010) introduced a variant of the basic ABC named elitist

artificial bee colony by integrating two local search strategies. The first local search strategy is

used when 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 97% of function evaluations have

been completed while the other local search works when 45%, 50%, 55%, 80%, 82%, 84%,

86%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% and 99% of the function

evaluations are reached. The purpose of this is to improve the best solution achieved so far by

generating a set of 1000 new food sources in its neighbourhood. Many of the recent

modifications and applications of the ABC algorithm can be studied in Bansal, Sharma, and

Jadon (2013). Therefore, in order to work for the same aim, we proposed a memetic algorithm

(escalated convergent ABC, EcABC) composed of ABC and two simple local search

approaches: classical unidimensional local search (CULS) based on classical unidimensional

search (Gardeux, Chelouah, Siarry, & Glover, 2009) and a local search (LFLS) based on levy

flight random walk (Sharma et al., 2013), activated by a deterministic and randomised criterion,

respectively. Furthermore, a new search scheme for scout bee, stochastic diffusion scout search

(SDSS), is proposed based on the concept of stochastic diffusion search (SDS; Bishop, 2007) to

increase the convergence capability of ABC. In SDSS, whenever a food source is exhausted,

then a scout bee does not always re-initialise itself randomly in the search space like in a

standard ABC but it finds a new food source in the proposed neighbourhood (refer Equation (5))

of its randomly selected neighbour having better fitness. The local search CULS and LFLS

works differently for the aim of exploitation. The CULS directly exploits the best solution of

each iteration further by generating a set of diverse trial solutions near it in a predefined

iteratively reduced range and selects a solution which is better than the other previously visited

solutions. While the LFLS on the other hand updates the best solution found so far by iteratively

reducing the step size of the best solution movement in the search space.

The rest of the paper is organised as follows: Section 2 briefs the standard ABC. Section 3

explains the proposed algorithm EcABC with description of working principles of each

introduced component. The proposed algorithm is tested and compared with the basic ABC and

its recent variants, namely Gbest guided artificial bee colony algorithm (GABC) (Zhu & Kwong,

2010), best-so-far artificial bee colony (BSFABC) (Banharnsakun, Achalakul, & Sirinaovakul,

2011) and modified artificial bee colony (MABC) (Akay & Karaboga, 2012) in Section 4.

Finally, in Section 5, we conclude the paper.
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2. Artificial bee colony algorithm

The ABC algorithm is relatively a simple and recent swarm intelligence-based algorithm. The

ABC algorithm is a simulation of food foraging behaviour of honeybees. In ABC, each solution

of the problem is called as food source of honeybees. The fitness of each food source is

proportional to its nectar quality. In ABC, bees are categorised into three groups: employed bees,

onlooker bees and scout bees. The number of employed bees is equal to the number of onlooker

bees. The employed bees start searching the food sources and store the information about the

quality of the food source. Onlooker bees wait in the hive for the employed and select the food

sources based on the information provided by the employed bees. The scout bee finds new food

sources in search space randomly in place of the exhausted food sources. The ABC solution

search process is also an iterative process like the other population-based algorithms. In ABC,

first swarm initialisation is done, then it is a iterative procedure of three phases: employed bee

phase, onlooker bee phase and scout bee phase. Each of the phases is explained as follows.

2.1 Initialisation of the swarm

If D is the number of variables in the optimisation problem, then each food source xiði ¼
1; 2; . . . ; SNÞ is a D-dimensional vector and is generated using a uniform distribution as

xij ¼ xminj þ rand ½0; 1�ðxmaxj 2 xminjÞ; ð1Þ
where xi represents the ith food source in the swarm, SN is the total number of food sources, xminj

and xmaxj are bounds of xi in jth direction and rand ½0; 1� is a uniformly distributed random

number in the range [0, 1]. After initialisation phase, ABC requires the cycle of the three phases,

namely employed bee phase, onlooker bee phase and scout bee phase to be executed.

2.2 Employed bee phase

In this phase, for each ith potential solution, a new trial position is generated by modifying its

single randomly selected dimension using the following equation:

vij ¼ xij þ fijðxij 2 xkjÞ; ð2Þ

where vij is new trial position, k [ f1; 2; . . . ; SN} and j [ f1; 2; . . . ;D} are randomly chosen

indices and k – i. fij is a random number between [21, 1]. After generating the new position,

the position with better fitness between the newly generated and the old one is selected.

2.3 Onlooker bees phase

In this phase, employed bees share the information associated with their food sources such as

quality (nectar) and position of the food source with the onlooker bees in the hive. Onlooker bees

evaluate the available information about the food sources, and based on fitness they select

solutions with a probability probi to search new positions around these. Here probi is calculated

as a function of fitness (there may be some other method):

probiðGÞ ¼ 0:9 £ fitnessi

maxfit
þ 0:1; ð3Þ

where fitnessi is the fitness value of the ith solution and maxfit is the maximum fitness amongst
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all the solutions. Again by applying greedy selection, if the fitness is higher than the previous

one, the onlooker bee stores the new position in its memory and forgets the old position.

2.4 Scout bees phase

If for a predetermined number of times, any bee’s position is not being modified, then that food

source is considered as abandoned or exhausted, i.e. it is not worth exploiting any more and the

associated bee becomes a scout bee. In this phase, the exhausted food source is replaced by a

randomly generated food source (as in initialisation phase) within the search space. In ABC, the

number of times after which a particular food source becomes exhausted is known as limit and is

a crucial control parameter.

Furthermore, Zhu and Kwong (2010) introduced an improved version of ABC, called GABC

to improve the basic ABC algorithmic performance. In GABC, the authors incorporated

information about the best bee found so far in the position update Equation (2) as

vij ¼ xij þ fijðxij 2 xkjÞ þ cijðyj 2 xkjÞ; ð4Þ

where yj is jth dimension of the global best bee found so far and c is a random number between

ð0;CÞ, C is a user-defined positive constant.

2.5 Main steps of the ABC algorithm

The pseudo-code of the ABC is shown in Algorithm 1.

3. Escalated convergent ABC

Karaboga and Akay (2009) analysed and compared the different variants of ABC for global

optimisation and found that the ABC shows poor performance, and concluded that without

converging to a local optimum, it may occasionally stop proceeding towards the global optimum.

Zhu and Kwong (2010) also observed that the solution search equation of the ABC algorithm has

good exploration but at the cost of exploitation. The exploration in an algorithm refers to the

ability of exploring the various unknown regions of the solution space in order to avoid being

trapped in local optima, while exploitation in an algorithm refers to the ability of refining the

existing previous good solutions to find better solutions in their surroundings in order to avoid

skipping true optima. So, to achieve good performance of the optimisation algorithm, both

exploitation and exploration abilities are necessary and should be well balanced. In ABC, any

potential solution updates itself using the information provided by a randomly selected potential

Algorithm 1. ABC algorithm:

Initialise the parameters;
while Termination criterion is not satisfied do
Step 1: Employed bee phase for generating new food sources;
Step 2: Onlooker bees phase for updating the food sources depending on their nectar amounts;
Step 3: Scout bee phase for discovering the new food sources in place of abandoned food sources;
Step 4: Memorise the best food source found so far;

end while
Output the best solution found so far.

S.S. Jadon et al.4184



solution within the current swarm. In this process, a step size, which is a linear combination of a

randomnumberfij [ ½21; 1�, current solution and a randomly selected solution, is used.Now the

quality of the updated solution highly depends upon this step size. If the step size is too large,

which may occur if the difference of the current solution and randomly selected solution is large

with high absolute value of fij, then the updated solution can surpass the true solution, and if this

step size is too small then the convergence rate of ABC may significantly decrease. A proper

balance of this step size can then balance the exploration and exploitation capabilities of ABC.

But, since this step size consists of a random component, the balance cannot be done manually.

One way of avoiding the situation of skipping a true solution while maintaining the speed of

convergence is the incorporation of one or more local searches into the basic ABC process. The

local search algorithm, in case of large step sizes, can search within the area that is jumped by the

basic ABC. During the iterations, the local search algorithm exhibits very strong exploitation

capability due to the execution of efficient local search on solutions (Wang,Wang,&Yang, 2009).

This paper aims at enhancing the performance of ABC by incorporation of two competitive

local search strategies: CULS based on CUS (Gardeux et al., 2009) and a local search (LFLS)

based on levy flight random walk (Sharma et al., 2013). This is done in expectation of increased

exploitation capability of ABC. The scout bee search scheme has also been modified using SDS

(Bishop, 2007) for the exhausted food source. The proposed algorithm, namely EcABC, is

explained in the following section.

3.1 Algorithmic framework

At the beginning of the algorithm search process, an initial set of solutions, i.e. food positions,

xiði ¼ 1; 2; . . . ; SNÞ is generated randomly in dimensional bound using Equation (1). Now for

each solution xij, a trial position is generated by modifying one of its dimensions using

Equation (4), and one with better fitness between old and new food source is stored in memory

of the employed. Then the onlooker bee generates the new position using the same Equation

(4) for only particular bees selected based on the probability defined in Equation (3) and

memorises the best position. Now each food source is checked for its limit counter, i.e. if any

food source is not being updated to a user-defined parameter called ‘limit’, then the

corresponding bee becomes scout. In the proposed EcABC algorithm, scout bee searches a

new food position using the proposed strategy: SDSS, which is explained in Section 3.1.1.

Now the bee with best fitness is selected and then based on the probability, at a time one of the

two introduced local searches, CULS and LFLS (explained in Section 3.1.2), plays the

expected role of exploitation of the available knowledge about the problem. This whole

process is repeated until the termination criterion is satisfied. The pseudo-code of the proposed

EcABC algorithm is shown in Algorithm 2.

3.1.1 Stochastic diffusion scout search

In this paper, we proposed a new search strategy for scout bees based on SDS. Initially, SDS was

proposed by Bishop (2007) and Omran and Salman (2012) as a population-based best-fit pattern-

matching algorithm. Bishop suggested that SDS can be recast for optimisation purpose by

defining the objective function f ðxÞ for a hypothesis x. So, we utilised this fact and modelled SDS

as per demand of our proposed algorithm EcABC as a search strategy for the scout bee.

Originally, SDS has a swarm of n agents and is an iterative process of two phases: TEST and

DIFFUSION. Here, initialisation (agents) means occupying initial position in the search space.
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In TEST (agents) phase, each agent i is assigned a status active or inactive based on fitness. For

each agent i; another agent j is randomly selected from the swarm; if agent i has better fitness

than j; then status of agent i is set as active otherwise inactive. In DIFFUSION phase, agents

share their surroundings among them through inter-agent communication. In standard SDS, each

inactive agent i communicates with a randomly selected member j of the swarm; if this member j

is active, then agent i shifts itself in the neighbourhood of agent j and if j is inactive then agent i

re-initialises its position randomly across the entire search space. In EcABC, we recast SDS as

per our objective and applied it for repositioning of the scout bee. We eliminated test phase in

SDS as we require it only for the scout bee and consider the scout bee as an inactive agent. Now

for scout bee i (say), we randomly select another bee j (say) from the colony. If bee j has better

fitness than scout bee i; then scout bee i generates its new position in the neighbourhood of jth

bee, else scout bee re-initialises itself randomly in the search space as in standard ABC.

Definition of neighbourhood of a bee x (say) is adopted from Omran and Salman (2012)) and is

defined as L # x # U, where L and U are defined as follows:

L ¼ x2 0:5 * rand * ðxmax 2 xminÞ;
U ¼ xþ 0:5 * rand * ðxmax 2 xminÞ; ð5Þ

where rand is a uniform random number between 0 and 1 and xmax; xmin are bounds of x in search

space. If any of the L and U crosses its bounds, then following bounds clamping is adopted.

Algorithm 2. EcABC:

Initialise the parameters;
while Termination criteria do
Step 1: Employed bee phase for generating new food sources using Equation (4);
Step 2: Onlooker bees phase for updating the food sources based on probability (defined in Equation 3)

using Equation (4);
Step 3: Apply SDSS using proposed Algorithm 4 for scout bee phase for discovering the new food source

in place of abandoned food source;
Step 4: Find the best solution so far;
Step 5:
If ðrandð0; 1Þ , 0:5Þ then
Apply CULS on best solution so far using Algorithm 5;

Else
Apply LFLS on best so far solution using Algorithm 6;

end if
end while
Print best solution.

Algorithm 3. SDS:

Initialise (agents);
while Until convergence (agents) do
Step 1: TEST (agents);.
Step 2: DIFFUSE (agents).

end while

S.S. Jadon et al.6186



if ðL , xminÞ then
L ¼ xmin and U ¼ U þ ðxmin 2 LÞ;

else if ðU . xmaxÞ then
U ¼ xmax and L ¼ L 2 (U 2 xmax);

end if

The SDSS which will be executed in scout phase in our EcABC Algorithm 2 is explained in

Algorithm 4.

3.1.2 Local search strategies

While adopting the local search techniques in general global search algorithms, all or some

individuals of the population try to identify better solutions in their small neighbourhoods. So,

these techniques are implemented in between the running iterations of population-based global

search algorithms. In these algorithms, the global search ability of population-based algorithms

tries to get the most promising regions in the search space, while the incorporated local search

strategy examines closely the surroundings of some already found regions, i.e. focuses rightly on

exploitation. Here the basic ABC is modified by incorporating two local searches CULS and

LFLS for exploiting the best solution in its surroundings. Neri & Tirronen (2009) have shown

that the combined use of two local searches is more beneficial than the use of a single local

search integrated into global optimisation algorithms. So, here two different local search

strategies are chosen in accordance with the principle of conducting a search under

complementary perspectives. Activation of the local search is performed by a simple

probabilistic criterion of 50% probability as shown in Algorithm 2.

. Classical unidimensional local search: CULS algorithm works as a local search

algorithm in which only the best individual of the current swarm updates itself in its

neighbourhood. In CULS, the step size, required to update the best individual in the

current swarm, is controlled by the CUS approach (Gardeux et al., 2009). The proposed

CULS is shown in Algorithm 5:

It is clear from Algorithm 5 that two new solutions are generated around the best solution by

adding a small step size. Then, through the greedy selection process, a best solution among the

Algorithm 4. SDSS:

Input scout xi and objective function Minf ðxÞ;
Select a random member xk from the swarm;
if ðf ðxkÞ , f ðxiÞÞ then
Generate neighbourhood ðL ; UÞ of xk using Equation (5) with bounds clamping defined in Section
3.1.1,
for j ¼ 1 to D do
xij ¼ Lkj þ rand½0; 1�ðUkj 2 LkjÞ

end for
else
for j ¼ 1 to D do
xij ¼ xminj þ rand½0; 1�ðxmaxj 2 xminjÞ

end for
end if
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three solutions (next, previous and best_solution) is selected based on fitness. In this algorithm,

hi represents the step size, which is required to update a randomly selected dimension of the

best_solution. Initially, hi is set equal to the 10th part of the difference between the upper and

lower bound of the ith direction to the search space. Here, the difference is divided by 10 to keep

the initial step size small so that the newly generated solution could not skip the true solution or

jump out side the search space. Then this algorithm iterates until a stopping criterion is reached.

At each iteration, the algorithm focuses on optimising the best solution found so far only in one

dimension i. After each iteration, h is decreased by a ratio value fixed to 0.5 until h becomes

smaller than a pre-defined value of minimum hi denoted by hmin (in this paper it is fixed to the

100th part of the difference between the upper and lower bounds of the ith direction to the search

space), and then h is not decreased further. The minimum value of step size is fixed to maintain

the progressiveness of the search process or to avoid the stagnation of the solutions.

. Levy flight random walk based local search: Sharma et al. (2013) proposed a local

search strategy (LFLS) based on levy flight and incorporated with the DE algorithm.

We incorporated the same concept here also in EcABC. The levy flight is a random walk

in which the amount of movement is defined as step-length. The random step lengths are

drawn from a certain probability distribution called levy distribution and defined as

Equation (6) (Sharma et al., 2013):

LðsÞ , jsj212b
; whereb ð0 , b # 2Þ is an index and s is the step length: ð6Þ

The local search utilises Mantegna’s algorithm (Yang, 2011) to generate random step sizes

using a symmetric levy stable distribution. Here the term ‘symmetric’ means that the step size

may be positive or negative. In Mantegna’s algorithm, the step length s is calculated by

s ¼ u

jvj1=b
; ð7Þ

Algorithm 5. CULS:

Input best solution so far bestsolution;
Initialise hmin

for j ¼ 1 to D do
hj ¼ xmaxj2xminj

10
:

end for;
j ¼ Uð1;DÞ
while hj . hmin do
next, previous ¼ best_solution;
nextj ¼ bestsolutionj þ hj;
previousj ¼ bestsolutionj 2 hj;
evaluate next and previous fitness;
x ¼ best of next, previous and bestsolution;
while better solution found do
xj ¼ xj ^ hj in best direction

end while
bestsolution ¼ x;
hj ¼ hj £ 0:5;
j ¼ Uð1;DÞ;

end while

S.S. Jadon et al.8188



where u and v are normally distributed numbers, i.e. u , Nð0;s2
uÞ; v , Nð0;s2

vÞ where

su ¼ Gð1þ bÞsinðpb=2Þ
bG½ð1þ bÞ=2�2ðb21Þ=2

� �1=b

; sv ¼ 1: ð8Þ

This distribution (for s) obeys the expected levy distribution for jsj $ js0j, where s0 is the

smallest step length (Yang, 2011). Here Gð:Þ is the Gamma function and is calculated as follows:

Gð1þ bÞ ¼
ð1
0

tbe2tdt: ð9Þ

In a special case when b is an integer, then we have Gð1þ bÞ ¼ b!.
In the proposed strategy, levy distribution is used to generate the step sizes to exploit the

search area and is calculated as follows:

step sizeðtÞ ¼ 0:01 £ sðtÞ £ SLC; ð10Þ

where t is the iteration counter for the local search strategy, sðtÞ is calculated using levy

distribution as shown in Equation (7) and SLC is the social learning component of the global

search algorithm. In levy flights, the step sizes are too aggressive and, therefore, new solutions

may be generated outside the domain or on the boundary. Since the main task of local search

algorithms is to exploit the available knowledge about a problem, steps sizes are responsible for

exploitation of the identified region. Hence, 0.01 multiplier is used in Equation (10) so that new

solutions remain in search space.

The solution update equation based on the proposed local search strategy is as follows:

x‘ijðt þ 1Þ ¼ xijðtÞ þ step sizeðtÞ £ Uð0; 1Þ; ð11Þ

where xij is the current position of ith individual and stepsizeðtÞ £ Uð0; 1Þ is the actual amount of

flight drawn from the levy distribution which is being added to move an individual to the next

position.

Algorithm 6. LFLS:

Input optimisation function Minf ðxÞ and b;
Select an individual xi in the swarm which is going to be modified;
Initialise t ¼ 1 and sv ¼ 1;
Compute su using Equation (8);
while ðt , 1Þdo
Compute step_size using Equation (10);
Generate a new solution x

0
i using Equation (11);

Calculate f ðx0
iÞ

If ðf ðx0
iÞ , f ðxiÞÞ then

xi ¼ x
0
i;

end if
t ¼ t þ 1;

end while
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The pseudo-code of the LFLS is shown in Algorithm 6 (Sharma et al., 2013). In algorithm 6,

1 determines the termination of local search which is set to be10 for the current algorithm as

suggested in the original article.

4. Experimental results and discussion

4.1 Test problems under consideration

For performance analysis purpose of the proposed algorithm EcABC, we applied it on 20

different continuous optimisation benchmark problems ( f 1 – f 20) of different degrees of

complexities and modalities (listed in Table 1). Test problems f 1 – f 12 and f 15 – f 20 are taken

from Ali, Khompatraporn, and Zabinsky (2005) and the test problems f 12 – f 14 are taken from

Suganthan et al. (2005) with the associated offset values.

4.2 Experimental setting

To prove the superiority of the proposed algorithm EcABC, results are compared with the basic

ABC (Karaboga, 2005) and with recent variants of ABC namely BSFABC (Banharnsakun et al.,

2011), GABC (Zhu & Kwong, 2010) and MABC (Akay & Karaboga, 2012). The following

parameter setting is adopted to test EcABC and other considered algorithms:

. Colony size NP ¼ 50 and number of food sources SN ¼ NP=2 (Diwold, Aderhold,

Scheidler, & Middendorf, 2011; El-Abd, 2012).

. fij ¼ rand½21; 1� and limit ¼ 1500 (Akay & Karaboga, 2012; Karaboga & Akay, 2011).

. The stopping criterion is either maximum number of function evaluations (which is set to

be 200,000) is reached or the acceptable error (mentioned in Table 1) has been achieved.

. The termination criterion 1 of LFLS is set to be 10 as suggested in Sharma et al. (2013).

4.3 Results comparison

Numerical results of the proposed and other considered algorithms with parameter setting in

Section 4.2 are given in Table 2 in terms of success rate ðSRÞ, average number of function

evaluations ðAFEsÞ and mean error ðMEÞ. Table 3 shows that EcABC outperforms the other

algorithms in terms of reliability, efficiency and accuracy most of the time. In order to analyse

relative performance of EcABC statistically, boxplots, acceleration rate (AR) and PIs have been

carried out.

EcABC, ABC, BSFABC, GABC and MABC are compared through success rate ðSRÞ, mean

error ðMEÞ and average number of function evolutions ðAFEÞ in Table 2. Now, pairwise

comparison is done between algorithms as first SR is compared between the algorithms, and if

they have achieved the same SR; then comparison is made on the basis of AFE. ME is then used

for comparison if it is not possible to distinguish them based on both SR and AFE. This

comparison analysis outcome is presented in Table 3. In Table 3, ‘þ ’ indicates that the EcABC

is better than the considered algorithm and ‘2 ’ indicates that the algorithm is not better. The

last row of Table 3 reflects the superiority of our proposed algorithm EcABC over ABC,

BSFABC, GABC and MABC, as it contains 72 ‘þ ’ signs out of 80 comparisons. GABC beats

proposed algorithm on four functions (f 1; f 2; f 14 and f 20), ABC beats EcABC on two functions

(f 10 and f 16) while BSFABC beats EcABC on only a single function f 10.

To compare the convergence speed of the algorithms, we calculated the AR based on the

AFEs using Equation (12). Smaller AFEs means higher convergence speed. The number of
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Table 2. Comparison of the results of test problems, TP: test problem.

TP Algorithm ME AFE SR

f 1 EcABC 5.24E 2 06 8917 100
ABC 4.90E 2 06 9579 100
BSFABC 5.31E 2 06 24,525 100
GABC 5.51E 2 06 8388 100
MABC 8.63E 2 06 22,584 100

f 2 EcABC 5.04E 2 06 35845 100
ABC 2.28E 2 04 45,943 97
BSFABC 5.96E 2 06 43,314 100
GABC 6.33E 2 06 33,335 99
MABC 9.24E 2 06 41,967 100

f 3 EcABC 3.42E 2 01 162,762 51
ABC 1.34E þ 00 186,025 22
BSFABC 1.68E þ 00 179,325 23
GABC 6.34E þ 00 176,041 25
MABC 3.60E þ 01 189,783 9

f 4 EcABC 9.18E 2 01 30,156 98
ABC 9.79E 2 01 188,482 56
BSFABC 9.62E 2 01 158,846 62
GABC 9.30E 2 01 121,725 98
MABC 9.39E 2 01 27,650 99

f 5 EcABC 5.55E 2 06 7381 100
ABC 5.46E 2 06 16,229 100
BSFABC 6.08E 2 06 14,299 100
GABC 5.92E 2 06 12,018 100
MABC 8.01E 2 06 9389 100

f 6 EcABC 7.48E 2 06 42,757 100
ABC 2.63E 2 02 87,183 86
BSFABC 6.85E 2 02 99,189 88
GABC 7.22E 2 06 68,526 98
MABC 8.40E 2 06 68,784 100

f 7 EcABC 1.02E 2 01 36,243 90
ABC 9.32E þ 00 198,559 4
BSFABC 4.24E þ 00 193,324 6
GABC 1.62E þ 00 184,896 23
MABC 1.29E þ 00 129,183 38

f 8 EcABC 5.34E 2 06 5651 100
ABC 8.39E 2 06 27,162 95
BSFABC 2.19E 2 05 26,843 100
GABC 5.76E 2 06 14,568 100
MABC 5.30E 2 06 10,051 100

f 9 EcABC 1.07E 2 02 100,321 57
ABC 1.51E 2 01 200,000 0
BSFABC 2.20E 2 02 157,940 32
GABC 1.47E 2 02 162,248 31
MABC 1.40E 2 02 141,156 36

f 10 EcABC 5.52E 2 06 22,879 89
ABC 5.12E 2 06 2069 100
BSFABC 5.42E 2 06 18,816 94
GABC 5.63E 2 06 22,961 89
MABC 6.29E 2 06 30,512 86

f 11 EcABC 8.57E 2 05 78,150 98

(Continued)
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Table 2 – continued

TP Algorithm ME AFE SR

ABC 1.76E 2 04 180,759 20
BSFABC 1.42E 2 04 144,038 55
GABC 8.80E 2 05 93,359 88
MABC 1.95E 2 04 176,378 24

f 12 EcABC 6.93E 2 05 8029 100
ABC 7.57E 2 05 19,168 89
BSFABC 8.11E 2 05 9796 96
GABC 7.04E 2 05 8151 100
MABC 1.91E 2 04 18,621 90

f 13 EcABC 8.59E 2 02 55,839 99
ABC 6.68E þ 00 184,801 19
BSFABC 2.70E þ 00 170,663 21
GABC 8.15E 2 01 100,011 61
MABC 9.49E 2 01 159,602 32

f 14 EcABC 2.53E 2 04 50,925 98
ABC 1.09E 2 03 84,618 88
BSFABC 4.29E 2 03 98,951 80
GABC 7.89E 2 05 40,248 99
MABC 6.28E 2 04 82,942 92

f 15 EcABC 4.40E 2 14 4703 100
ABC 2.19E 2 06 126,899 50
BSFABC 4.42E 2 07 93,493 57
GABC 5.88E 2 07 97,443 53
MABC 5.49E 2 07 98,707 54

f 16 EcABC 1.06E 2 04 90,326 55
ABC 1.20E 2 05 989 100
BSFABC 1.63E 2 04 98,426 51
GABC 1.93E 2 04 122,223 39
MABC 1.70E 2 04 102,787 49

f 17 EcABC 4.26E 2 14 4608 100
ABC 4.89E 2 05 191,885 8
BSFABC 4.97E 2 14 25,290 100
GABC 5.27E 2 14 43,731 100
MABC 8.04E 2 06 180,174 12

f 18 EcABC 1.95E 2 03 3612 100
ABC 1.95E 2 03 24,724 100
BSFABC 1.95E 2 03 19,190 99
GABC 1.94E 2 03 5933 100
MABC 1.95E 2 03 9916 100

f 19 EcABC 4.29E 2 06 1878 100
ABC 4.93E 2 06 9942 100
BSFABC 5.29E 2 06 9479 100
GABC 4.58E 2 06 4816 100
MABC 5.02E 2 06 10,168 100
EcABC 7.28E 2 16 44,393 100

f 20 ABC 9.24E 2 16 72,981 98
BSFABC 7.15E 2 16 71,056 100
GABC 9.22E 2 16 39,628 100
MABC 9.14E 2 16 60,021 100

S.S. Jadon et al.14194



function evaluations for each test problem is averaged over 100 runs to reduce the effect of

stochastic nature of the algorithms.

AR ¼ AFEALGO

AFEEcABC

; ð12Þ

where ALGO [ fABC;BSFABC;GABC;MABC}. Table 4 reports the outcome of comparison

between EcABC and ABC, EcABC and BSFABC, EcABC and GABC, and EcABC and MABC

in terms of AR. It is clear from Equation (12) that AR . 1 means EcABC is faster. Table 4

shows that convergence speed of EcABC is faster among all the considered algorithms for most

of the functions. The same conclusion can also be drawn from Figure 1.

For consolidated performance comparison, boxplot analyses have been executed for all

considered algorithms. The empirical distribution of data is efficiently represented graphically

by the boxplot analysis tool (Williamson, Parker, & Kendrick, 1989). The boxplots for EcABC,

ABC, BSFABC, GABC and MABC are shown in Figure 2. It is clear from this figure that

EcABC is better than the considered algorithms as interquartile range and median are

comparatively low.

Furthermore, to compare the considered algorithms based on all success rates, the average

number of function evaluations and the mean error simultaneously, PI (Deep & Thakur, 2007)

are calculated by giving weighted importance to the SR, AFE and ME. The values of PI for

EcABC, ABC, BSFABC, GABC and MABC are calculated by using the following equations:

PI ¼ 1

Np

XNp

i¼1

k1a
i
1 þ k2a

i
2 þ k3a

i
3

� �
;

Table 3. Summary of Table 2 outcome.

Test problems EcABC vs. ABC EcABC vs. BSFABC EcABC vs. GABC EcABC vs. MABC

f 1 þ þ 2 þ
f 2 þ þ 2 þ
f 3 þ þ þ þ
f 4 þ þ þ 2
f 5 þ þ þ þ
f 6 þ þ þ þ
f 7 þ þ þ þ
f 8 þ þ þ þ
f 9 þ þ þ þ
f 10 2 2 þ þ
f 11 þ þ þ þ
f 12 þ þ þ þ
f 13 þ þ þ þ
f 14 þ þ 2 þ
f 15 þ þ þ þ
f 16 2 þ þ þ
f 17 þ þ þ þ
f 18 þ þ þ þ
f 19 þ þ þ þ
f 20 þ þ 2 þ
Total number of
þ signs

18 19 16 19
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where ai
1 ¼ Sri=Tri; ai

2 ¼
(
Mfi=Afi; if Sri . 0:

0; if Sri ¼ 0:
; and ai

3 ¼ Moi=Aoi

i ¼ 1; 2; . . . ;Np

. Sri ¼ successful simulations/runs of ith problem.

. Tri ¼ total simulations of ith problem.

. Mfi ¼ minimum of average number of function evaluations used for obtaining the

Table 4. AR of EcABC compared with other considered algorithms.

Test problems
EcABC vs.

ABC
EcABC vs.
BSFABC

EcABC vs.
GABC

EcABC vs.
MABC

f 1 1.074137163 2.750188116 0.940633975 2.5325796
f 2 1.281695394 1.208370123 0.929955489 1.170765525
f 3 1.142926921 1.101762395 1.081588705 1.166018991
f 4 6.250232126 5.267475793 4.036510147 0.916898793
f 5 2.198756535 1.937273997 1.628236863 1.272051581
f 6 2.039041221 2.319838267 1.602690188 1.608724308
f 7 5.478547582 5.334105896 5.10156444 3.564357255
f 8 4.806523366 4.75007388 2.577918872 1.778601221
f 9 1.993600542 1.574346348 1.617288504 1.407043391
f 10 0.090419871 0.82241525 1.003596357 1.333652116
f 11 2.31298955 1.84311226 1.194618751 2.256930338
f 12 2.387360738 1.220043717 1.015183804 2.31926217
f 13 3.309555998 3.056354234 1.791066419 2.858263661
f 14 1.661605999 1.94305674 0.79032774 1.628696704
f 15 26.98026959 19.87781817 20.71756602 20.98630778
f 16 0.010943852 1.089677345 1.353137317 1.137955353
f 17 41.64171007 5.48828125 9.490234375 39.10026042
f 18 6.845113082 5.312907843 1.642676198 2.745289992
f 19 5.294211619 5.04765962 2.564566803 5.414558816
f 20 1.643971328 1.60059748 0.892661046 1.352034133
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Figure 1. AR of EcABC compared with the basic ABC, BSFABC, GABC and MABC.
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required solution of ith problem.

. Afi ¼ average number of function evaluations used for obtaining the required solution of

ith problem.

. Moi ¼ minimum of mean error obtained for the ith problem.

. Aoi ¼ mean error obtained by an algorithm for the ith problem.

. Np ¼ total number of optimisation problems evaluated.

The weights assigned to the success rate, the average number of function evaluations and the

mean error are represented by k1; k2 and k3; respectively, where k1 þ k2 þ k3 ¼ 1 and

0 # k1; k2; k3 # 1. To calculate the PIs, equal weights are assigned to two variables while

weights of the remaining variables vary from 0 to 1 as given in Deep and Thakur (2007).

Following are the resultant cases:

(1) k1 ¼ W ; k2 ¼ k3 ¼ 12W
2

; 0 # W # 1;

(2) k2 ¼ W ; k1 ¼ k3 ¼ 12W
2

; 0 # W # 1;

(3) k3 ¼ W ; k1 ¼ k2 ¼ 12W
2

; 0 # W # 1:

The graphs corresponding to each of the cases (1), (2) and (3) for EcABC, ABC, GABC,

BSFABC and MABC are shown in Figure 3(a)–(c), respectively. In these figures, the weights

k1; k2 and k3 are represented by horizontal axis, while the PI is represented by the vertical axis.

In case (1), the average number of function evaluations and the mean error are given equal

weights, and weight to success rate varies. PIs of the considered algorithms are superimposed in

Figure 3(a) for comparison of the performance. It is observed that PI of EcABC is higher than the

considered algorithms. In case (2), success rate and mean error are assigned equal weights, and

in case (3), equal weights are given to the success rate and average function evaluations. It is

clear from Figure 3(b) and 3(c) that in these cases also EcABC algorithm performs better than

other algorithms.

Overall, we found that EcABC has high convergent rate to the global optima as compared

with other well-established versions of ABC, which justifies its name as escalated convergent

ABC.

EcABC ABC BSFABC GABC MABC

0

0.5

1

1.5

2

x 105

A
ve

ra
g

e 
n

u
m

b
er

 o
f 

fu
n

ct
io

n
 e

va
lu

at
io

n
s

Figure 2. Boxplots graphs for average number of function evaluations.
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Figure 3. PI for test problems; (a) for case (1), (b) for case (2) and (c) for case (3).

S.S. Jadon et al.18198



5. Conclusion

This paper proposes a modified ABC, namely EcABC which is a memetic algorithm composed

of a standard ABC and two local search strategies CULS and LFLS. Moreover, this paper

proposes a new search strategy for scout bee, namely SDSS based on SDS. Based on the

probability, at a time, one of the CULS and LFLS local search strategies is applied on the best

individual of each iteration in the ABC algorithm in order to find more promising solutions in the

territory of the best individual. Because of local search strategies and a modified scout search

procedure, EcABC has shown a fast convergent behaviour towards the global optima. EcABC is

compared with ABC and with its recent variants, namely BSFABC, GABC and MABC, and

experimental results over the test problems show the improved and promising performance of

the proposed algorithm EcABC in terms of reliability, efficiency and accuracy. In future, we will

focus to check the efficiency of this proposed version of ABC on complex real-world problems.
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evolution. Swarm, Evolutionary, and Memetic Computing, 248–259. doi:10.1007/978-3-319-

03753-0_23

Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., & Tiwari, S. (2005). Problem definitions

and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL

Report 2005005.

Vesterstrom, J., & Thomsen, R. (2004). A comparative study of differential evolution, particle swarm

optimization, and evolutionary algorithms on numerical benchmark problems. In Evolutionary

Computation, 2004. CEC, 2004. Congress on IEEE (Vol. 2, pp. 1980–1987).

Wang, H., Wang, D., & Yang, S. (2009). A memetic algorithm with adaptive hill climbing strategy for

dynamic optimization problems. Soft Computing – A Fusion of Foundations, Methodologies and

Applications, 13, 763–780.

Williamson, D., Parker, R., & Kendrick, J. (1989). The box plot: A simple visual method to interpret data.

Annals of Internal Medicine, 110, 916. doi:10.7326/0003-4819-110-11-916

Yang, X. (2010). Firefly algorithm, Levy flights and global optimization. Research and Development in

Intelligent Systems, XXVI, 209–218.

Yang, X. (2011). Nature-inspired metaheuristic algorithms. Luniver Press.

Zhu, G., & Kwong, S. (2010). Gbest-guided artificial bee colony algorithm for numerical function

optimization. Applied Mathematics and Computation, 217, 3166–3173. doi:10.1016/j.amc.2010.08.

049

S.S. Jadon et al.20200

http://dx.doi.org/10.1016/j.amc.2009.03.090
http://dx.doi.org/doi:10.1016/j.asoc.2010.12.001
http://dx.doi.org/doi:10.1109/icnn.1995.488968
http://dx.doi.org/10.1007/s12293-009-0008-9
http://dx.doi.org/doi:10.1007/978-3-642-32650-9_31
http://dx.doi.org/10.1109/MCS.2002.1004010
http://dx.doi.org/doi:10.1007/978-3-319-03753-0_23
http://dx.doi.org/doi:10.1007/978-3-319-03753-0_23
http://dx.doi.org/10.7326/0003-4819-110-11-916
http://dx.doi.org/10.1016/j.amc.2010.08.049
http://dx.doi.org/10.1016/j.amc.2010.08.049

	Abstract
	1. Introduction
	2. Artificial bee colony algorithm
	2.1 Initialisation of the swarm
	2.2 Employed bee phase
	2.3 Onlooker bees phase
	2.4 Scout bees phase
	2.5 Main steps of the ABC algorithm

	3. Escalated convergent ABC
	3.1 Algorithmic framework
	3.1.1 Stochastic diffusion scout search
	3.1.2 Local search strategies


	4. Experimental results and discussion
	4.1 Test problems under consideration
	4.2 Experimental setting
	4.3 Results comparison

	5. Conclusion
	Disclosure statement
	References



